A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An unexpected journey for BNIP3. | LitMetric

An unexpected journey for BNIP3.

Autophagy

Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA.

Published: June 2024

Mitophagy is a cellular process that enables the selective degradation of damaged, dysfunctional, or superfluous mitochondria. During mitophagy, specific proteins recognize and tag mitochondria for degradation. These tagged mitochondria are engulfed by specialized structures called phagophores that then mature into autophagosomes/mitophagosomes. Mitophagosomes subsequently transport their mitochondrial cargo to lysosomes, where the mitochondria are broken down and recycled. While the PINK1-PRKN-dependent mitophagy pathway is well understood, mitophagy can also occur independently of this pathway. BNIP3 and BNIP3L/NIX, paralogous membrane proteins on the outer mitochondrial membrane (OMM), serve as ubiquitin-independent mitophagy receptors. Historically, BNIP3 regulation was thought to be primarily transcriptional through HIF1A (hypoxia inducible factor 1 subunit alpha). However, recent work has revealed a significant post-translational dimension, highlighting the strong role of the ubiquitin-proteasome system (UPS) in BNIP3 regulation. With these emerging concepts in mind, we aimed to develop a unified understanding of how steady-state levels of BNIP3 are established and maintained and how this regulation governs underlying cell physiology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11210886PMC
http://dx.doi.org/10.1080/15548627.2024.2312038DOI Listing

Publication Analysis

Top Keywords

bnip3 regulation
8
bnip3
5
mitophagy
5
unexpected journey
4
journey bnip3
4
bnip3 mitophagy
4
mitophagy cellular
4
cellular process
4
process enables
4
enables selective
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!