The dependence of Cryptosporidium parasites on host cell metabolites suggests that the development of nutritional interventions to limit parasite proliferation should be feasible. Based on this concept, we are testing dietary interventions to affect the enterocytes' metabolism in a manner that limits intracellular multiplication of the parasite. We hypothesize that changes in the metabolic pathways encoded by the gastro-intestinal tract microbiota may restrict parasite proliferation. To identify taxonomic and metabolic features of the microbiota associated with severity of cryptosporidiosis, as determined by estimating oocyst output, we characterized the fecal microbiota from mice experimentally infected with Cryptosporidium parvum. To eliminate the confounding effect of the interaction between co-housed mice, as well as facilitate the identification of microbiota markers associated with severity of cryptosporidiosis, fecal microbiota from individually caged mice were analyzed. Variation partitioning analysis applied to 16S sequence data from 25 mice belonging to four experiments shows that experiment was by far the biggest source of microbiota variation. Severity of cryptosporidiosis explained a smaller, though significant, fraction of microbiota variation. Notably, this effect was significant in the pre-patent phase of the infection, before mice excreted oocysts. These results are consistent with the pre-patent intestinal microbiota having a modest, but measurable, effect on cryptosporidiosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10917813 | PMC |
http://dx.doi.org/10.1038/s41598-024-56184-1 | DOI Listing |
Front Immunol
January 2025
Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, Department of Nutrition and Health, China Agricultural University, Beijing, China.
Introduction: Synbiotics have revealed the possibility of improving constipation through gut microbiota. The synergistic efficacy of subsp. lactis BL-99 (BL-99) and fructooligosaccharide (FOS) on constipation have not been investigated.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe, Japan.
Objective: We aimed to evaluate microbiome and microbiota-derived C18 dietary polyunsaturated fatty acids (PUFAs), such as conjugated linoleic acid (CLA), and to investigate their differences that correlate with arthritis severity in collagen-induced arthritis (CIA) mice.
Methods: On day 84 after induction, during the chronic phase of arthritis, cecal samples were analyzed using 16S rRNA sequencing, and plasma and cecal digesta were evaluated using liquid chromatography-tandem mass spectrometry. Differences in microbial composition between 10 control (Ctrl) and 29 CIA mice or between the mild and severe subgroups based on arthritis scores were identified.
Cureus
December 2024
Internal Medicine, School of Medicine, Xiamen University, Xiamen, CHN.
Attention-deficit/hyperactivity disorder (ADHD) is a complex neurodevelopmental condition, predominantly affecting children, characterized by inattention, hyperactivity, and impulsivity. A growing body of evidence has highlighted the potential influence of the gut microbiota on the onset and presentation of ADHD symptoms. The gut microbiota, a diverse microbial ecosystem residing within the gastrointestinal tract, exerts multiple effects on systemic physiology, including immune modulation, metabolic regulation, and neuronal signalling.
View Article and Find Full Text PDFIntroduction: Allergic rhinitis (AR) is a common respiratory disorder influenced by various factors in its pathogenesis. Recent studies have begun to emphasize the significant role of gut microbiota in immune modulation and its potential association with the development of AR. This research aims to characterize the gut microbiota of patients with AR who are sensitized via inhalation, utilizing 16S rRNA sequencing to shed light on the pathogenesis of AR and identify potential therapeutic targets.
View Article and Find Full Text PDFJ Microbiol Biotechnol
December 2024
Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea.
The aim of this study is to investigate the protective potential of IM57, IR51, and IR62 strains, isolated from infant feces, and their mixture against inflammatory bowel disease (IBD). The strains exhibited robust antioxidant activities and anti-inflammatory properties in RAW 264.7 cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!