Thermal fault diagnosis of complex electrical equipment based on infrared image recognition.

Sci Rep

Power Supply Service Command Center, State Grid Beibei Power Supply Company, Chongqing, 400070, China.

Published: March 2024

This paper realizes infrared image denoising, recognition, and semantic segmentation for complex electrical equipment and proposes a thermal fault diagnosis method that incorporates temperature differences. We introduce a deformable convolution module into the Denoising Convolutional Neural Network (DeDn-CNN) and propose an image denoising algorithm based on this improved network. By replacing Gaussian wrap-around filtering with anisotropic diffusion filtering, we suggest an image enhancement algorithm that employs Weighted Guided Filtering (WGF) with an enhanced Single-Scale Retinex (Ani-SSR) technique to prevent strong edge halos. Furthermore, we propose a refined detection algorithm for electrical equipment that builds upon an improved RetinaNet. This algorithm incorporates a rotating rectangular frame and an attention module, addressing the challenge of precise detection in scenarios where electrical equipment is densely arranged or tilted. We also introduce a thermal fault diagnosis approach that combines temperature differences with DeeplabV3 + semantic segmentation. The improved RetinaNet's recognition results are fed into the DeeplabV3 + model to further segment structures prone to thermal faults. The accuracy of component recognition in this paper achieved 87.23%, 86.54%, and 90.91%, with respective false alarm rates of 7.50%, 8.20%, and 7.89%. We propose a comprehensive method spanning from preprocessing through target recognition to thermal fault diagnosis for infrared images of complex electrical equipment, providing practical insights and robust solutions for future automation of electrical equipment inspections.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10918090PMC
http://dx.doi.org/10.1038/s41598-024-56142-xDOI Listing

Publication Analysis

Top Keywords

electrical equipment
24
thermal fault
16
fault diagnosis
16
complex electrical
12
infrared image
8
recognition paper
8
image denoising
8
temperature differences
8
electrical
6
equipment
6

Similar Publications

Count-rate management in I SPECT/CT calibration.

EJNMMI Phys

January 2025

Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Solna, Sweden.

Background: System calibration is essential for accurate SPECT/CT dosimetry. However, count losses due to dead time and pulse pileup may cause calibration errors, in particular for I, where high count rates may be encountered. Calibration at low count rates should also be avoided to minimise detrimental effects from e.

View Article and Find Full Text PDF

The heating oil circuit plays an essential role in the heating calendering roller for the lithium battery pole piece. To achieve the optimization of the heating oil circuit, a fluid-thermal-structural coupling method and a multi-objective optimization procedure are proposed to obtain the optimal solution. A fluid-thermal-structural coupling flowchart based on the numerical modeling for the calendering roller temperature distribution is created to automate the analysis processes in the optimization iteration.

View Article and Find Full Text PDF

This study aims to establish a thyristor-controlled series compensator (TCSC) equipped with a proportional integral derivative with filter (PIDF) controller by using a futuristic optimisation technique called evolutionary programming sine cosine algorithm (EPSCA) with multiobjective function (MOF). EPSCA is developed by merging evolutionary programming and the sine cosine algorithm. Three stability indicators, i.

View Article and Find Full Text PDF

Functional magnetic resonance imaging (fMRI) has dramatically advanced non-invasive human brain mapping and decoding. Functional near-infrared spectroscopy (fNIRS) and high-density diffuse optical tomography (HD-DOT) non-invasively measure blood oxygen fluctuations related to brain activity, like fMRI, at the brain surface, using more-lightweight equipment that circumvents ergonomic and logistical limitations of fMRI. HD-DOT grids have smaller inter-optode spacing (~ 13 mm) than sparse fNIRS (~ 30 mm) and therefore provide higher image quality, with spatial resolution ~ 1/2 that of fMRI, when using the several source-detector distances (13-40 mm) afforded by the HD-DOT grid.

View Article and Find Full Text PDF

Validation of Muscle Ultrasound Speckle Tracking and the Effect of Nordic Hamstring Exercise on Biceps Femoris Displacement.

Ultrasound Med Biol

January 2025

School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan ROC; Center of Physical Therapy, National Taiwan University Hospital, Taipei, Taiwan ROC. Electronic address:

Objective: This study aimed to validate the ultrasound speckle tracking (UST) algorithm, determine the optimal probe location by comparing normalized cross-correlation (NCC) values of muscle displacement at two locations (proximal vs. middle) of the biceps femoris long head (BFlh) using the UST, and investigate the effects of Nordic hamstring curl exercise (NHE) training on BFlh displacement.

Methods: UST efficacy was verified with ex vivo uniaxial testing of porcine leg muscles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!