THE ACCURACY OF INTRAORAL SCAN IN OBTAINING DIGITAL IMPRESSIONS OF EDENTULOUS ARCHES: A SYSTEMATIC REVIEW.

J Evid Based Dent Pract

Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials, Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Beijing, P.R. China.

Published: March 2024

Objectives: Accuracy is a crucial factor when assessing the quality of digital impressions. This systematic review aims to assess the accuracy of intraoral scan (IOS) in obtaining digital impressions of edentulous jaws.

Methods: This systematic review adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and was registered in the International Prospective Register of Systematic Reviews (PROSPERO ID: CRD42022382983). A thorough retrieval of 7 electronic databases was undertaken, encompassing MEDLINE (PubMed), Web of Science, EMBASE, Scopus, Cochrane Library, Virtual Health Library, and Open gray, through September 11, 2023. A snowball search was performed by tracing the reference lists of the included studies. The Population, Intervention, Comparison, and Outcome (PICO) question of this systematic review was: "What is the accuracy of intraoral scan in obtaining digital impressions of edentulous arches?" The Modified Methodological Index for Nonrandomized Studies (MINORS) was employed to assess the risk of bias.

Results: Among the studies retrieved from databases and manual search, a total of 25 studies were selected for inclusion in this systematic review, including 9 in vivo and 16 in vitro studies. Twenty-one of the included studies utilized the 3D deviation analysis method, while 4 studies employed the linear or angular deviation analysis method. The accuracy results of in vitro studies indicated a trueness range of 20-600 μm and a precision range of 2-700 μm. Results of in vivo studies indicated a trueness range of 40-1380 μm, while the precision results were not reported.

Conclusion: According to the results of this study, direct digital impressions by IOS cannot replace the conventional impressions of completely edentulous arches in vivo. Edentulous digital impressions by IOS demonstrated poor accuracy in peripheral areas with mobile tissues, such as the soft palate, vestibular sulcus, and sublingual area.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jebdp.2023.101933DOI Listing

Publication Analysis

Top Keywords

digital impressions
24
systematic review
20
accuracy intraoral
12
intraoral scan
12
obtaining digital
12
impressions edentulous
12
studies
9
scan obtaining
8
edentulous arches
8
systematic reviews
8

Similar Publications

Background/purpose: Identifying crestal bone level (CBL) on the buccal and lingual aspects poses challenges in conventional dental radiographs. Given that optical coherence tomography (OCT) has the capability to non-invasively provide in-depth information about the periodontium, this in vitro study aimed to assess whether OCT can effectively identify periodontal landmarks and measure CBL in the presence of gingiva.

Materials And Methods: An in-house handheld scanning probe connected to a 1310-nm swept-source OCT (SS-OCT) system, along with self-developed algorithms were employed to measure the CBL in dental models with artificial gingiva.

View Article and Find Full Text PDF

Background/purpose: The performance of intraoral scanners (IOSs) relies on the operator's skills. However, whether operator experience influences IOS accuracy remains unclear. This study investigated the effect of operator experience on the trueness accuracy and time-based efficiency of IOSs.

View Article and Find Full Text PDF

Aim: This study investigated the accuracy of intraoral scanner (IOS) based on different image acquisition technologies in the field of presurgical-orthopedictreatment (PSOT) in neonates with cleft.

Methods: Dental cast models of clinical situations representing unilateral cleft-lip-palate(UCLP), bilateral cleft-lippalate( BCLP) and cleft-palate(CP) with reference PEEK-scanbodies (Cares RC Mono-Scankörper, Straumann, Switzerland) were scanned utilizing four IOS systems: CareStream-CS3600®(CS), Medit-i500®(MD), Cerec-Omnicam®(SO), 3Shape-Trios-3®(TS). One calibrated operator made 5 scans from each model using each IOS (N=60).

View Article and Find Full Text PDF

Purpose: This in vitro study investigates the accuracy of digital impressions taken with different dental materials. It compares the scan accuracy and trueness of a handheld scanner operated by an experienced clinician, a handheld scanner operated by a robotic arm, and a tabletop scanner. By measuring the number of triangles, average degree, and vertices within the three groups, conclusions about the accuracy of different scanning methods on digital models can be drawn.

View Article and Find Full Text PDF

Aims And Background: This study aimed to assess the accuracy of digital intraoral scans in capturing the three-dimensional (3D) surface of teeth and dental arches in mixed dentition, compared with conventional plaster models. Intraoral scanning technology has seen rapid advancements in recent years, revolutionizing orthodontic and dental practices. However, its accuracy in mixed dentition remains a subject of investigation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!