Effects of vehicles on the physical properties and biocompatibility of premixed calcium silicate cements.

Dent Mater J

Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University.

Published: March 2024

Premixed calcium silicate cements (pCSCs) contain vehicles which endow fluidity and viscosity to CSCs. This study aimed to investigate the effects of three vehicles, namely, polyethylene glycol (PEG), propylene glycol (PG), and dimethyl sulfoxide (DMSO), on the physicochemical properties and biocompatibility of pCSCs. The setting time, solubility, expansion rate, and mechanical strength of the pCSCs were evaluated, and the formation of calcium phosphate precipitates was assessed in phosphate-buffered saline (PBS). The effects of pCSC extracts on the osteogenic differentiation of mesenchymal stem cells (MSCs) were investigated. Finally, the tissue compatibility of pCSCs in rat femurs was observed. CSC containing PEG (CSC-PEG) exhibited higher solubility and setting time, and CSC-DMSO showed the highest expansion rate and mechanical strength. All pCSCs generated calcium phosphate precipitates. The extract of CSC-PG induced the highest expressions of osteogenic markers along with the greatest calcium deposites. When implanted in rat femurs, CSC-PEG was absorbed considerably, whereas CSC-PG remained relatively unaltered inside the femur.

Download full-text PDF

Source
http://dx.doi.org/10.4012/dmj.2023-147DOI Listing

Publication Analysis

Top Keywords

properties biocompatibility
8
premixed calcium
8
calcium silicate
8
silicate cements
8
setting time
8
expansion rate
8
rate mechanical
8
mechanical strength
8
strength pcscs
8
calcium phosphate
8

Similar Publications

Drug delivery vehicles optimize therapeutic outcomes by enhancing drug efficacy, minimizing side effects, and providing controlled release. Injectable hydrogels supersede conventional ones in the field of drug delivery owing to their less invasive administration and improved targeting. However, they face challenges such as low biodegradability and biocompatibility, potentially compromising their effectiveness.

View Article and Find Full Text PDF

This study investigates the mechanical properties as well as and cyto- and biocompatibility of collagen membranes cross-linked with glutaraldehyde (GA), proanthocyanidins (PC), hexamethylendiisocyanate (HMDI) and 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide (EC/NHS). A non-crosslinked membrane was used as reference control (RF). The initial cytotoxic analyses revealed that the PC, EC, and HMDI crosslinked membranes were cytocompatible, while the GA crosslinked membrane was cytotoxic and thus selected as positive control in the further study.

View Article and Find Full Text PDF

The development of an effective and rapid method for healing the skin is of crucial importance. In this study, we prepared a porous scaffold made of polycaprolactone (PCL) and carbon quantum dots (CQDs), Fe, and Chitosan (Cs) as the scaffold core to cover the skin. Then evaluated antibacterial, biocompatibility, and wound healing properties as well as the expression of genes effective in wound healing.

View Article and Find Full Text PDF

Intranasal delivery of metformin using metal-organic framework (MOF)-74-Mg nanocarriers.

Adv Compos Hybrid Mater

January 2025

J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843 USA.

Dosage tolerance is one of the translational challenges of using metformin (Met) in brain therapeutics. This paper presents metal-organic framework (MOF)-74-Mg nanocarriers (NCs) for intranasal (IN) delivery of brain-specific agents with a prolonged release time. We confirmed their excellent biocompatibility (5 mg/mL) and intrinsic fluorescence properties (370/500 nm excitation/emission peak) in Neuro-2A cells.

View Article and Find Full Text PDF

Metal-organic framework (MOF)-bioactive glass (BG) systems for biomedical applications - A review.

Mater Today Bio

February 2025

Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, 91058, Erlangen, Germany.

In recent years, metal-organic frameworks (MOFs) have emerged as promising materials for biomedical applications, owing to their superior chemical versatility, unique textural properties and enhanced mechanical properties. However, their fast and uncontrolled degradation, together with the reduced bioactivity have restricted their clinical potential. To overcome these limitations, MOFs can be synergistically combined with other materials, such as bioactive glasses (BGs), known for their bioactivity and therapeutic ion releasing capabilities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!