Reproducibility assessment of rapid strains in cardiac MRI: Insights and recommendations for clinical application.

Eur J Radiol

Department of Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Germany. Electronic address:

Published: May 2024

AI Article Synopsis

Article Abstract

Purpose: Studies have shown the incremental value of strain imaging in various cardiac diseases. However, reproducibility and generalizability has remained an issue of concern. To overcome this, simplified algorithms such as rapid atrioventricular strains have been proposed. This multicenter study aimed to assess the reproducibility of rapid strains in a real-world setting and identify potential predictors for higher interobserver variation.

Methods: A total of 4 sites retrospectively identified 80 patients and 80 healthy controls who had undergone cardiac magnetic resonance imaging (CMR) at their respective centers using locally available scanners with respective field strengths and imaging protocols. Strain and volumetric parameters were measured at each site and then independently re-evaluated by a blinded core lab. Intraclass correlation coefficients (ICC) and Bland-Altman plots were used to assess inter-observer agreement. In addition, backward multiple linear regression analysis was performed to identify predictors for higher inter-observer variation.

Results: There was excellent agreement between sites in feature-tracking and rapid strain values (ICC ≥ 0.96). Bland-Altman plots showed no significant bias. Bi-atrial feature-tracking and rapid strains showed equally excellent agreement (ICC ≥ 0.96) but broader limits of agreement (≤18.0 % vs. ≤3.5 %). Regression analysis showed that higher field strength and lower temporal resolution (>30 ms) independently predicted reduced interobserver agreement for bi-atrial strain parameters (ß = 0.38, p = 0.02 for field strength and ß = 0.34, p = 0.02 for temporal resolution).

Conclusion: Simplified rapid left ventricular and bi-atrial strain parameters can be reliably applied in a real-world multicenter setting. Due to the results of the regression analysis, a minimum temporal resolution of 30 ms is recommended when assessing atrial deformation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejrad.2024.111386DOI Listing

Publication Analysis

Top Keywords

rapid strains
12
regression analysis
12
predictors higher
8
bland-altman plots
8
excellent agreement
8
feature-tracking rapid
8
field strength
8
temporal resolution
8
bi-atrial strain
8
strain parameters
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!