A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Using Knowledge-Guided Machine Learning To Assess Patterns of Areal Change in Waterbodies across the Contiguous United States. | LitMetric

Lake and reservoir surface areas are an important proxy for freshwater availability. Advancements in machine learning (ML) techniques and increased accessibility of remote sensing data products have enabled the analysis of waterbody surface area dynamics on broad spatial scales. However, interpreting the ML results remains a challenge. While ML provides important tools for identifying patterns, the resultant models do not include mechanisms. Thus, the "black-box" nature of ML techniques often lacks ecological meaning. Using ML, we characterized temporal patterns in lake and reservoir surface area change from 1984 to 2016 for 103,930 waterbodies in the contiguous United States. We then employed knowledge-guided machine learning (KGML) to classify all waterbodies into seven ecologically interpretable groups representing distinct patterns of surface area change over time. Many waterbodies were classified as having "no change" (43%), whereas the remaining 57% of waterbodies fell into other groups representing both linear and nonlinear patterns. This analysis demonstrates the potential of KGML not only for identifying ecologically relevant patterns of change across time but also for unraveling complex processes that underpin those changes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10956424PMC
http://dx.doi.org/10.1021/acs.est.3c05784DOI Listing

Publication Analysis

Top Keywords

machine learning
12
surface area
12
knowledge-guided machine
8
waterbodies contiguous
8
contiguous united
8
united states
8
lake reservoir
8
reservoir surface
8
area change
8
groups representing
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!