An effective, GFP-inspired fluorescent Zn sensor is developed for two-photon microscopy and related biological application that features an 8-methoxyquinoline moiety. Excellent photophysical characteristics including a 37-fold fluorescence enhancement with excitation and emission maxima at 440 nm and 505 nm, respectively, as well as a high two-photon cross-section of 73 GM at 880 nm are reported. Based on the experimental data, the relationship between the structure and properties was elucidated and explained backed up by DFT calculations, particularly the observed PeT phenomenon for the turn-on process. Biological validation and detailed experimental and theoretical characterization of the free and the zinc-bound compounds are presented.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202400009DOI Listing

Publication Analysis

Top Keywords

two-photon microscopy
8
gfp inspired
4
inspired 8-methoxyquinoline-derived
4
8-methoxyquinoline-derived fluorescent
4
fluorescent molecular
4
molecular sensor
4
sensor detection
4
detection two-photon
4
microscopy effective
4
effective gfp-inspired
4

Similar Publications

In vivo two-photon FLIM resolves photosynthetic properties of maize bundle sheath cells.

Photosynth Res

January 2025

State Key Laboratory of Forage Breeding-by-Design and Utilization, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.

Maize (Zea mays L.) performs highly efficient C photosynthesis by dividing photosynthetic metabolism between mesophyll and bundle sheath cells. In vivo physiological measurements are indispensable for C photosynthesis research as photosynthetic activities are easily interrupted by leaf section or cell isolation.

View Article and Find Full Text PDF

Lanthanide(III) complexes with two-photon absorbing antennas are attractive for microscopy imaging of live cells because they can be excited in the NIR. We describe the synthesis and luminescence and imaging properties of two Eu complexes, and , with (-carbazolyl)-aryl-alkynyl-picolinamide and (-carbazolyl)-aryl-picolinamide antennas, respectively, conjugated to the TAT cell-penetrating peptides. Contrary to what was previously observed with related Eu complexes with carbazole-based antennas in a mixture of water and organic solvents, these two complexes show very low emission quantum yield (Φ < 0.

View Article and Find Full Text PDF

Disclosing long-term tolerance, efficacy and penetration properties of hyaluronic acid-coated latanoprost-loaded liposomes as chronic glaucoma therapy.

J Control Release

January 2025

Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Universidad Complutense de Madrid (UCM), Madrid, Spain; Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, UCM; Health Research Institute (Instituto de Investigación Sanitaria) of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain; University Institute of Industrial Pharmacy (IUFI), Faculty of Pharmacy, UCM, Madrid, Spain. Electronic address:

Frequent topical administration of hypotensive eye drops in glaucoma patients may lead to the development of dry eye disease (DED) symptoms, because of tear film destabilization and the adverse effects associated with antiglaucoma formulations. To address all this, in the current study preservative-free latanoprost-loaded (0.005 % w/v) synthetic phosphatidylcholine (1,2-dioleoyl-sn-glycero-3-phosphocholine 0.

View Article and Find Full Text PDF

Myelin loss induces neural dysfunction and contributes to the pathophysiology of neurodegenerative diseases, injury conditions, and aging. Because remyelination is often incomplete, better understanding endogenous remyelination and developing remyelination therapies that restore neural function are clinical imperatives. Here, we use in vivo two-photon microscopy and electrophysiology to study the dynamics of endogenous and therapeutic-induced cortical remyelination and functional recovery after cuprizone-mediated demyelination in mice.

View Article and Find Full Text PDF

Out-of-focus signal rejection for pO measurements using two-photon phosphorescence lifetime microscopy.

Biomed Opt Express

January 2025

Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.

Two-photon phosphorescence lifetime microscopy has been a key tool for studying cerebral oxygenation in mice. However, the accuracy of the partial pressure of oxygen (pO) measurements is affected by out-of-focus signal. In this work, we applied reconfigurable differential aberration imaging to characterize and correct for out-of-focus signal contamination in intravascular pO imaging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!