Targeted Detoxification of Aflatoxin B in Edible Oil by an Enzyme-Metal Nanoreactor.

J Agric Food Chem

State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang 330047, China.

Published: March 2024

Mycotoxin contamination is an important issue for food safety and the environment. Removing mycotoxins from food without losing nutrients and flavor components remains a challenge. In this study, a novel strategy was proposed for the targeted removal of aflatoxin B (AFB) from peanut oil using an amphipathic enzyme-metal hybrid nanoreactor (PL-GOx-FeO@COF) constructed with covalent organic frameworks (COFs) which can selectively adsorb AFB. Due to the confined space provided by COFs and the proximity effect between GOx and FeO, the detoxification of AFB is limited in the nanoreactor without affecting the composition and properties of the oil. The detoxification efficiency of AFB in the chemoenzymatic cascade reaction catalyzed by PL-GOx-FeO@COF is six times higher than that of the combination of free GOx and FeO. The AFB transformation product has nontoxicity to kidney and liver cells. This study provides a powerful tool for the targeted removal of mycotoxins from edible oils.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.3c09094DOI Listing

Publication Analysis

Top Keywords

targeted removal
8
gox feo
8
afb
5
targeted detoxification
4
detoxification aflatoxin
4
aflatoxin edible
4
edible oil
4
oil enzyme-metal
4
enzyme-metal nanoreactor
4
nanoreactor mycotoxin
4

Similar Publications

Polymer-based vaccines for substance use disorders: Targeting ketamine and methamphetamine with protein-free hyperbranched polyethyleneimine carriers.

Eur J Med Chem

January 2025

Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China. Electronic address:

Substance use disorders (SUDs) present a critical global health challenge, as current treatment options often prove insufficient, particularly for substances like ketamine and methamphetamine. In this study, we developed a novel immunotherapeutic strategy utilizing protein-free, polymer-based vaccines, with hyperbranched polyethylenimine (Hb-PEI) as a carrier to enhance immune specificity and remove the production of non-specific antibodies. Haptens for ketamine and methamphetamine were covalently conjugated to the Hb-PEI carrier, along with the Toll-like receptor (TLR) 7/8 agonist 1V209, to stimulate targeted humoral immune responses.

View Article and Find Full Text PDF

Enhanced bacteriostatic effects of phage vB_C4 and cell wall-targeting antibiotic combinations against drug-resistant .

Microbiol Spectr

January 2025

Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China.

is a vital zoonotic pathogen known for its extensive drug resistance and ability to form biofilms, which contribute to its antibiotic resistance. In this study, the phage vB_C4, specifically targeting , was isolated and subjected to bioinformatic analysis and bacteriostatic activity assays. The combination of phage vB_C4 with antibiotics such as cephalothin and cefoxitin, which target the bacterial cell wall, resulted in a significantly enhanced bacteriostatic effect compared to either the phage or antibiotics alone.

View Article and Find Full Text PDF

Reticulocyte Binding Protein Homologue (RH5), a leading malaria vaccine candidate, is essential for erythrocyte invasion by the parasite, interacting with the human host receptor, basigin. RH5 has a small number of polymorphisms relative to other blood-stage antigens, and studies have shown that vaccine-induced antibodies raised against RH5 are strain-transcending, however most studies investigating RH5 diversity have been done in Africa. Understanding the genetic diversity and evolution of malaria antigens in other regions is important for their validation as vaccine candidates.

View Article and Find Full Text PDF

Metformin (MET), a commonly prescribed medication for managing type 2 diabetes, has demonstrated various beneficial effects beyond its primary anti-diabetic efficacy. However, the mechanism underlying MET activity and its distribution within organelles remain largely unknown. In this study, we integrate multiple technologies, including chemical labeling, immunostaining, and high-resolution microscopy imaging, to visualize the accumulation of MET in organelles of cultured cells.

View Article and Find Full Text PDF

Background: In renal cell carcinoma (RCC), skin metastases (SMs) occur in only 3.3% of cases and are even rarer as an initial manifestation of the disease. Although combination therapy with immune checkpoint inhibitors (ICIs) and targeted agents is the current standard of care, access to these treatments may be limited in certain regions due to cost constraints.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!