Using Density Functional Theory (DFT) and Time Dependent DFT (TD-DFT) methods, this inquiry theoretically examines seven novel hole-transport materials (HTMs) namely DFBT1, DFBT2, DFBT3, DFBT4, DFBT5, DFBT6, and DFBT7 based on the 2,2'bithiophene core for future use as HTMs for perovskite solar cells (PSCs). The model molecule has been modified through substituting the end groups situated on the diphenylamine moieties with a tow acceptor bridged by thiophene, this modification was performed to test the impact of the π-bridge and acceptor on the electronic, photophysical, and photovoltaic properties of the newly created molecules. DFBT1 - DFBT7 displayed a lower band gap (1.49 eV to 2.69 eV) than the model molecule (3.63 eV). Additionally, the newly engineered molecules presented a greater λ ranging from 393.07 nm to 541.02 nm in dimethylformamide solvent, as compared to the model molecule (380.61 nm). The PCEs of all newly designed molecules (22.42% to 29.21%) were high compared with the reference molecule (19.62%). Thus, this study showed that all seven newly small molecules were excellent candidates for a novel PSC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10895-024-03644-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!