AI Article Synopsis

  • * A novel 3D printing method produced soft, ridged-slippery surfaces (SRSSs) that demonstrated impressive anisotropic rolling resistances, significantly enhancing droplet manipulation capabilities.
  • * The SRSSs proved versatile in various applications, including heavy metal ion detection and droplet transport, showcasing excellent durability and compatibility with different liquids.

Article Abstract

The droplet lossless directional motion control on slippery surfaces holds immense promise for applications in microfluidic chips, hazardous substance detection, chemical dispensing, However, a significant challenge in this domain lies in efficiently developing soft, slippery surfaces with large-range anisotropic wettability and compatibility for curved scenarios. This study addressed this challenge through a quick 3D printing-assisted method to produce soft, ridged-slippery surfaces (SRSSs) as the droplet manipulation platform. The SRSSs demonstrated substantial anisotropic rolling resistances, measuring 116.9 μN in the perpendicular direction and 7.7 μN in the parallel direction, exhibiting a ratio of 15.2. Combining several extents of anisotropic wettability on a soft substrate could realize diverse reagent manipulation functions. Furthermore, these SRSSs showcased high compatibility with various droplet constituents, impressive liquid impact resistance, self-repair capability, and mechanical durability and thermal durability, ensuring exceptional applicability. As proofs of concept, the SRSSs were successfully applied in droplet control and classification for heavy metal ion detection, mechanical arm-based droplet grab and release, and cross-species transport, showcasing their remarkable versatility, compatibility, and practicality in advanced droplet microfluidic chips and water harvesting applications.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3sm01766dDOI Listing

Publication Analysis

Top Keywords

anisotropic wettability
12
soft ridged-slippery
8
ridged-slippery surfaces
8
surfaces large-range
8
large-range anisotropic
8
droplet manipulation
8
slippery surfaces
8
microfluidic chips
8
droplet
7
efficient fabrication
4

Similar Publications

Bioinspired 1D Anisotropic Double-Spiral Metal Wires for Efficient Fog Harvesting.

Small

January 2025

Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, P. R. China.

Innovative design strategies of fog harvesting devices (FHDs) demonstrate promising remedy for water crisis in arid areas. 1D FHDs ensure unimpeded wind circulation and can be manufactured more cost-effectively for extensive regions. Inspired by cactus thorns, desert beetles, and spider silk, two metal organic frameworks (MOFs) functionalized Cu wires with opposite wettability are double-twisted by a mechanical twisting machine, forming 1D double-spiral Cu wires with alternating superhydrophobic/superhydrophilic dual-MOF patterns.

View Article and Find Full Text PDF

Engineering Wettability Transitions on Laser-Textured Shark Skin-Inspired Surfaces via Chemical Post-Processing Techniques.

Micromachines (Basel)

November 2024

Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, 170 Kessels Road, Brisbane, QLD 4111, Australia.

Surface wettability, the interaction between a liquid droplet and the surface it contacts, plays a key role in influencing droplet behavior and flow dynamics. There is a growing interest in designing surfaces with tailored wetting properties across diverse applications. Advanced fabrication techniques that create surfaces with unique wettability offer significant innovation potential.

View Article and Find Full Text PDF

We comparatively studied the wetting behavior of water droplets on graphene and biphenylene using molecular dynamics simulations. The research showed that pristine biphenylene (BPN), unlike graphene, exhibits greater hydrophobicity and anisotropic wettability. This specific anisotropy can be tuned by the layer number and vacancy concentration.

View Article and Find Full Text PDF

: gradient-free, spontaneous and controllable droplet motion on soft solids.

Soft Matter

November 2024

School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.

Most passive droplet transport strategies rely on spatial variations of material properties to drive droplet motion, leading to gradient-based mechanisms with intrinsic length scales that limit the droplet velocity or the transport distance. Here, we propose droplet , a novel mechanism that leverages an anisotropic fiber-reinforced deformable solid to achieve spontaneous and gradient-free droplet transport. Using high-fidelity simulations, we identify the fluid wettability, fiber orientation, anisotropy strength and elastocapillary number as critical parameters that enable controllable droplet velocity and long-range droplet transport.

View Article and Find Full Text PDF

Borophene, a novel two-dimensional material unveiled in 1998, has garnered significant interest among researchers due to its distinct mechanical and electrical characteristics. Efforts to experimentally synthesize borophene continue to captivate researchers' interest in recent years. Given the current lack of experimental studies on the interaction between water and the borophene surface, molecular dynamics simulation offers a valuable approach for predicting the substance's reactivity with water.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!