A dynamic thermodynamic resolution method for converting (/)-BINOL (1,1'-binaphthyl-2,2'-diol) into ()-BINOL in 100% theoretical yield is reported. This technique involves mixing (/)-BINOL with -benzyl cinchonidinium bromide (1 equiv) and a [Cu(tmeda)(μ-OH)]Br (2.5 mol %) redox catalyst in acetonitrile. In the background of this process is the observation that the energy for atropoisomerization decreases significantly when an electron is removed from BINOL. Therefore, it is possible to convert both enantiomers into the thermodynamically favorable [-benzyl cinchonidinium bromide·()-BINOL] adduct.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.4c00520DOI Listing

Publication Analysis

Top Keywords

dynamic thermodynamic
8
thermodynamic resolution
8
resolution racemic
4
racemic 11'-binaphthyl-22'-diol
4
11'-binaphthyl-22'-diol binol
4
binol dynamic
4
resolution method
4
method converting
4
converting /-binol
4
/-binol 11'-binaphthyl-22'-diol
4

Similar Publications

Anthocyanins (ANS) are an appealing substitute to synthetic colorants; but their practical applicability is limited due to low color stability. Copigmentation can improve both complex's color stability as well as intensity. In this study, we examined the interaction of red cabbage ANS with copigments i.

View Article and Find Full Text PDF

Computational prediction of novel two-dimensional tungsten nitride superconductors.

J Phys Condens Matter

January 2025

Escuela de Artes Plásticas y Audiovisuales, Benemerita Universidad Autonoma de Puebla, Av. San Claudio y Blvd. 18 Sur, Edificios 1IF1, 2IF1 y 3IF1, Ciudad Universitaria, Colonia San Manuel, Puebla, Puebla, 72570, MEXICO.

Transition metal nitrides are well-known 3D superconductor materials. However, there is a lack of knowledge related to their two-dimensional (2D) counterparts, which have several potential technological applications. In this work, we predict, using an evolutionary algorithm coupled with a first-principles approach, a set of novel 2D superconductive structures based on tungsten nitride.

View Article and Find Full Text PDF

Model of drop infiltration into a thin amphiphilic porous medium.

J Colloid Interface Sci

January 2025

UMR1114 EMMAH INRAE-AU, 228, Route de L'Aérodrome, Avignon, F84000, France. Electronic address:

Hypothesis: Water drop infiltration into a thin amphiphilic porous medium is influenced by wettability. Due to the reorganization of amphiphilic matter in contact with water, polar interaction changes the wettability in the bulk porous medium and at the liquid/porous substrate interface. To model out of equilibrium water transfer, we propose a thermodynamics approach derived from Onsager's principle.

View Article and Find Full Text PDF

Dual inhibition of Akt and MEK1 pathways offers a promising strategy to enhance treatment efficacy in gastric cancer. In this study, we employed computational approaches followed by in vitro validations. Our results demonstrate that SBL-027 exhibits robust and enduring interactions with Akt and MEK1 kinases, as evidenced by atomistic molecular dynamics simulations and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) based binding free energy estimates.

View Article and Find Full Text PDF

Constructing a self-consistent first-principles framework that accurately predicts the properties of electron transfer reactions through finite-temperature molecular dynamics simulations is a dream of theoretical electrochemists and physical chemists. Yet, predicting even the absolute standard hydrogen electrode potential, the most fundamental reference for electrode potentials, proves to be extremely challenging. Here, we show that a hybrid functional incorporating 25% exact exchange enables quantitative predictions when statistically accurate phase-space sampling is achieved thermodynamic integrations and thermodynamic perturbation theory calculations, utilizing machine-learned force fields and Δ-machine learning models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!