Stretchable materials, such as gels and elastomers, are attractive materials in diverse applications. Their versatile fabrication platforms enable the creation of materials with various physiochemical properties and geometries. However, the mechanical performance of traditional stretchable materials is often hindered by the deficiencies in their energy dissipation system, leading to lower fracture resistance and impeding their broader range of applications. Therefore, the synthesis of fracture-resistant stretchable materials has attracted great interest. This review comprehensively summarizes key design considerations for constructing fracture-resistant stretchable materials, examines their synthesis strategies to achieve elevated fracture energy, and highlights recent advancements in their potential applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202312816 | DOI Listing |
Lab Chip
January 2025
Department of Nano Science and Technology, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea.
Electrochemical impedance spectroscopy (EIS) serves as a non-invasive technique for assessing cell status, while mechanical stretching plays a pivotal role in stimulating cells to emulate their natural environment. Integrating these two domains enables the concurrent application of mechanical stimulation and EIS in a stretchable cell culture system. However, challenges arise from the difficulty in creating a durable and stable stretchable impedance electrode array.
View Article and Find Full Text PDFMater Horiz
January 2025
College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China.
Hydrogels are promising materials for wearable electronics, artificial skins and biomedical engineering, but their limited stretchability, self-recovery and crack resistance restrict their performance in demanding applications. Despite efforts to enhance these properties using micelle cross-links, nanofillers and dynamic interactions, it remains a challenge to fabricate hydrogels that combine high stretchability, self-healing and strong adhesion. Herein, we report a novel hydrogel synthesized the copolymerization of acrylamide (AM), maleic acid (MA) and acrylonitrile (AN), designed to address these limitations.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing College, University of Chinese Academy of Sciences, Chongqing, 400714, P. R. China.
As a recent focal point of research, soft electronics encompass various factors that synergistically enhance their mechanical properties and ensure stable electrical performance. However, challenges such as immiscible conductive fillers, poor phase interfaces, and unstable conductive networks hinder the overall efficacy of these materials. To address these issues, a hydrogel featuring an oriented interpenetrating network structure (OIPN) is developed.
View Article and Find Full Text PDFNat Commun
January 2025
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, China.
Fully π-conjugated polymers consisting of plane and rigid aromatic units present a fantastic optoelectronic property, a promising candidate for printed and flexible optoelectronic devices. However, obtaining high-performance conjugated polymers with an excellent intrinsically flexible and printable capacity is a great challenge due to their inherent coffee-ring effect and brittle properties. Here, we report an asymmetric substitution strategy to improve the printable and stretchable properties of deep-blue light-emitting conjugated polymers with a strong inter-aggregate capillary interaction for flexible printed polymer light-emitting diodes.
View Article and Find Full Text PDFMater Horiz
January 2025
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!