ReaxFF molecular dynamics simulations of methane clathrate combustion.

J Chem Phys

Department of Chemistry, Beijing Technology and Business University, Beijing 100048, People's Republic of China.

Published: March 2024

Understanding the ignition and dynamic processes for the combustion of hydrate is crucial for efficient energy utilization. Through reactive force field molecular dynamics simulations, we studied the high-temperature decomposition and combustion processes of methane hydrates in a pure oxygen environment. We found that at an ignition temperature of 2800 K, hydrates decomposed from the interface to the interior, but the layer-by-layer manner was no longer strictly satisfied. At the beginning of combustion, water molecules reacted first to generate OH•, followed by methane oxidation. The combustion pathway of methane is CH4→CH3•→CH3O•→CH2O→HC•O→HCOO•→CO(CO2). During the combustion process, a liquid water layer was formed between melted methane and oxygen, which hindered the reaction's progress. When there is no heat resistance, oxygen will transform into radicals such as OH• and O•, which have faster diffusion rates, allowing oxygen to conveniently cross the mass transfer barrier of the liquid water layer and participate in the combustion process. Increasing the amount of OH• may cause a surge in the reaction. On the other hand, when significant heat resistance exists, OH• is difficult to react with low-temperature hydrate components, but it can transform into O• to trigger the oxidation of methane. The H• generated has a sufficient lifetime to contact high-temperature oxygen molecules, converting oxygen into radicals that easily cross the water layer to achieve mass transfer. Therefore, finding ways to convert oxygen into various radicals is the key to solving the incomplete combustion of hydrates. Finally, the reaction pathways and microscopic reaction mechanisms of each species are proposed.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0189469DOI Listing

Publication Analysis

Top Keywords

water layer
12
molecular dynamics
8
dynamics simulations
8
combustion
8
combustion process
8
liquid water
8
heat resistance
8
mass transfer
8
oxygen radicals
8
oxygen
7

Similar Publications

Investigating how the size of carbon support pores influences the three-phase interface of platinum (Pt) particles in fuel cells is essential for enhancing catalyst utilization. This study employed molecular dynamics simulations and density functional theory calculation to examine the effects of mesoporous carbon support size, specifically its pore diameter, on Nafion ionomer distribution, as well as on proton and gas/liquid transport channels, and the utilization of Pt active sites. The findings show that when Pt particles are located within the pores of carbon support (Pt/PC), there is a significant enhancement in the spatial distribution of Nafion ionomer, along with a reduction in encapsulation around the Pt particles, compared to when Pt particles are positioned on the surface or in excessively large pores of the carbon support.

View Article and Find Full Text PDF

This study introduces a novel landfill cover material, employing lake sediment as a substrate, stabilised with fly ash, slag, desulfurisation gypsum and construction waste. The mechanical properties, including shear strength parameters, unconfined compressive strength, hydraulic conductivity, volumetric shrinkage, and water content, of the solidified sludge were evaluated. The microscopic mechanism of the solidified sludge were investigated through XRD, FTIR, and SEM-EDS techniques.

View Article and Find Full Text PDF

Context: This study systematically investigated the effects of single S-atom vacancy defects and composite defects (vacancy combined with doping) on the properties of MoS using density functional theory. The results revealed that N-doped S-vacancy MoS has the smallest composite defect formation energy, indicating its highest stability. Doping maintained the direct band gap characteristic, with shifts in the valence band top.

View Article and Find Full Text PDF

Innovation in the drying process during the roasting of cashew nut almonds has the potential to significantly improve product quality. This study aimed to investigate the drying kinetics of the almond, comparing the experimental data with the mathematical models of Fick, Page, Cavalcanti Mata, and Henderson and Pabis. The research was conducted at the Laboratory of Physical Measurements and Drying of the Academic Unit of Food Engineering at the Federal University of Campina Grande.

View Article and Find Full Text PDF

In this study, the improvement effect of different organic substances on compacted cohesive soil in southern Xinjiang was discussed, with emphasis on the influence of different organic substances on soil chemical properties and microorganisms, so as to determine the best carbon source input and provide theoretical support for the rational utilization of organic materials in southern Xinjiang. Field experiments were conducted to evaluate the effects of farm fertilizer, biochar, commercial organic fertilizer, microbial fertilizer and mineral potassium humate on physical and chemical properties of viscous soil, agronomic properties and yield of cotton, with three gradients for each organic fertilizer. The results showed that: (1) all organic fertilizers improved soil structure, among which farm fertilizer significantly reduced soil bulk density and salinity, increased soil organic matter, total nitrogen and available nutrients, and thus increased cotton height, stem diameter and yield.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!