The enantioselective synthesis of tricyclic oxoquinolines NHC-catalyzed cascade reaction of enals with malonates bearing a 2-aminophenyl group is reported. The chiral α,β-unsaturated acylazoliums underwent a smooth Michael-aldol-lactamization-dehydration quadruple cascade with the amino malonate derivative to afford the desired tricyclic products.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4cc00502cDOI Listing

Publication Analysis

Top Keywords

enantioselective synthesis
8
synthesis tricyclic
8
tricyclic oxoquinolines
8
oxoquinolines nhc-catalyzed
8
nhc-catalyzed michael-aldol-lactamization-dehydration
4
michael-aldol-lactamization-dehydration cascade
4
cascade enantioselective
4
nhc-catalyzed cascade
4
cascade reaction
4
reaction enals
4

Similar Publications

Etoxazole, a widely used mite growth inhibitor, contains a chiral center in its chemical structure, resulting in two mirror-image enantiomers. These enantiomers of etoxazole display significant differences in biological activity and environmental behavior. In bioassays conducted against , it was observed that S-etoxazole demonstrated approximately 279.

View Article and Find Full Text PDF

Enantioselective Synthesis of Chiral β-Amino Phosphorus Derivatives via Nickel-Catalyzed Asymmetric Hydrogenation.

J Am Chem Soc

December 2024

Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.

Compared with chiral β-amino phosphorus compounds, which can be easily derived from natural optically pure α-amino acids, obtaining chiral β-amino phosphorus derivatives remains a challenge. These derivatives, which cannot be derived from chiral natural amino acids, possess unique biological activities or potential catalytic activities. Herein, highly enantioselective hydrogenation for the preparation of chiral β-amino phosphorus derivatives from -β-enamido phosphorus compounds is reported by using a green and low-cost earth-abundant metal nickel catalyst (13 examples of 99% ee).

View Article and Find Full Text PDF

Substrate expansion of Geotrichum candidum alcohol dehydrogenase towards diaryl ketones by mutation.

Appl Microbiol Biotechnol

December 2024

Department of Life Science and Technology: Tokyo Kogyo Daigaku Seimei Rikogakuin Seimei Rikogakukei, Institute of Science Tokyo, 4259 Nagatsuta-Cho Midzeori-Ku, Yokohama, 226-8501, Japan.

Chiral diaryl alcohols, such as (4-chlorophenyl)(pyridin-2-yl)methanol, are important intermediates for pharmaceutical synthesis. However, using alcohol dehydrogenases (ADHs) in the asymmetric reduction of diaryl ketones to produce the corresponding alcohols is challenging due to steric hindrance in the substrate binding pockets of the enzymes. In this study, the steric hindrance of the ADH from Geotrichum candidum NBRC 4597 (G.

View Article and Find Full Text PDF

Copper-Catalyzed Asymmetric Nucleophilic Opening of 1,1,2,2-Tetrasubstituted Donor-Acceptor Cyclopropanes for the Synthesis of α-Tertiary Amines.

J Am Chem Soc

December 2024

State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China.

Catalytic asymmetric transformation of donor-acceptor cyclopropanes (DACs) has been proven to be a highly valuable and robust strategy to construct diverse types of enantioenriched molecules. However, the use of 1,1,2,2-tetrasubstituted DACs to form products bearing quaternary stereocenters remains a long-term unsolved challenge. Here, we report the copper-catalyzed asymmetric aminative ring opening of tetrasubstituted alkynyl DACs that delivers a myriad of α-tertiary amines with high levels of enantioselectivities.

View Article and Find Full Text PDF

Palladium-Catalyzed Enantioselective Cyclization of 1,6-Enynes to Access Chiral γ-Butyrolactam.

J Org Chem

December 2024

Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.

A palladium-catalyzed asymmetric chlorocyclization of 1,6-enynes has been described. Controlling the chloride ion concentration in the system by substrate design is the key to achieving asymmetric chlorinated cyclization. In the presence of Pd(PhCN)Cl and chiral phosphoramidite ligands, the reaction accesses diverse chiral ()-α-chloromethylene-γ-butyrolactams with excellent selectivity and enantioselectivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!