Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Layertronics, rooted in the layer Hall effect (LHE), is an emerging fundamental phenomenon in condensed matter physics and spintronics. So far, several theoretical and experimental proposals have been made to realize LHE, but all are based on antiferromagnetic systems. Here, using symmetry and tight-binding model analysis, we propose a general mechanism for engineering layertronics in a two-dimensional ferromagnetic multiferroic lattice. The physics is related to the band geometric properties and multiferroicity, which results in the coupling between Berry curvature and layer degree of freedom, thereby generating the LHE. Using first-principles calculations, we further demonstrate this mechanism in bilayer (BL) TcIrGeS. Due to the intrinsic inversion and time-reversal symmetry breakings, BL TcIrGeS exhibits multiferroicity with large Berry curvatures at both the center and corners of the Brillouin zone. These Berry curvatures couple with the layer physics, forming the LHE in BL TcIrGeS. Our work opens a new direction for research on layertronics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.4c00436 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!