Since 1958, cell culture media supplemented with fetal bovine serum is used, despite the well-known concerns about animal welfare, reproducibility, reliability, relevance, and safety. To obliterate these concerns and increase scientific accuracy, we recently published an open access, publicly available paper on a defined medium composition to make it possible for any lab to prepare this medium. The medium supports routine culturing and cell banking as well as investigations of growth curves, dose response testing of compounds of cells in 2D and 3D, and cell migration; all important aspects for research and toxicology. Here we give a detailed description of how to mix the defined universal cell culture medium in 14 simple steps to support any entity that wishes to make it. We also list different normal and cancer cell lines that have been cultured in the defined medium.•Open source composition of animal product free universal cell culture medium•Protocols for mixing solutions of small xeno free molecules for supplementation•Protocols for mixing solutions of human proteins for supplementation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10912720 | PMC |
http://dx.doi.org/10.1016/j.mex.2024.102592 | DOI Listing |
Stem Cell Res Ther
January 2025
Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
Background: Patient-derived lung cancer organoids (PD-LCOs) demonstrate exceptional potential in preclinical testing and serve as a promising model for the multimodal management of lung cancer. However, certain lung cancer cells derived from patients exhibit limited capacity to generate organoids due to inter-tumor or intra-tumor variability. To overcome this limitation, we have created an in vitro system that employs mesenchymal stromal cells (MSCs) or fibroblasts to serve as a supportive scaffold for lung cancer cells that do not form organoids.
View Article and Find Full Text PDFBMC Med Inform Decis Mak
January 2025
Department of Pediatrics, School of Medicine, Ekbatan Hospital, Hamadan University of Medical Sciences, Hamadan, Iran.
Background: Urinary tract infection (UTI) is a frequent health-threatening condition. Early reliable diagnosis of UTI helps to prevent misuse or overuse of antibiotics and hence prevent antibiotic resistance. The gold standard for UTI diagnosis is urine culture which is a time-consuming and also an error prone method.
View Article and Find Full Text PDFCell Mol Biol Lett
January 2025
Enzymology and Metabolism Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367, Belvaux, Luxembourg.
Background: Metabolism is error prone. For instance, the reduced forms of the central metabolic cofactors nicotinamide adenine dinucleotide (NADH) and nicotinamide adenine dinucleotide phosphate (NADPH), can be converted into redox-inactive products, NADHX and NADPHX, through enzymatically catalyzed or spontaneous hydration. The metabolite repair enzymes NAXD and NAXE convert these damaged compounds back to the functional NAD(P)H cofactors.
View Article and Find Full Text PDFBiol Trace Elem Res
January 2025
Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China.
Selenium (Se) intake or selenoprotein overexpression can cause abnormal glucose metabolism and increase the risk of type 2 diabetes (T2D). The purpose of this study is to observe whether glycolysis bypass in the de novo serine synthesis pathway (SSP) is activated under high-Se stress in vitro. Initially, HCT-116, L02, HepG2, and differentiated C2C12 cells were exposed to five selenomethionine (SeMet) concentrations (0.
View Article and Find Full Text PDFZhong Nan Da Xue Xue Bao Yi Xue Ban
August 2024
Department of Radiology, Third Xiangya Hospital, Central South University, Changsha 410013, China.
Objectives: Islet transplantation is one of the most promising curative methods for type 1 diabetes mellitus (T1DM), but early hypoxic death of the graft post-transplantation impedes successful treatment. To improve the efficacy of islet transplantation and enhance islet cell resistance to hypoxia, reducing hypoxic injury before revascularization is crucial. Mesenchymal stem cells (MSCs) are known to regulate immune responses and protect against hypoxic damage through paracrine mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!