Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A fundamental understanding of proton transport through graphene nanopores, defects, and vacancies is essential for advancing two-dimensional proton exchange membranes (PEMs). This study employs ReaxFF molecular dynamics, metadynamics, and density functional theory to investigate the enhanced proton transport through a graphene nanopore. Covalently functionalizing the nanopore with a benzenesulfonic group yields consistent improvements in proton permeability, with a lower activation barrier (≈0.15 eV) and increased proton selectivity over sodium cations. The benzenesulfonic functionality acts as a dynamic proton shuttle, establishing a favorable hydrogen-bonding network and an efficient proton transport channel. The model reveals an optimal balance between proton permeability and selectivity, which is essential for effective proton exchange membranes. Notably, the benzenesulfonic-functionalized graphene nanopore system achieves a theoretically estimated proton diffusion coefficient comparable to or higher than the current state-of-the-art PEM, Nafion. Ergo, the benzenesulfonic functionalization of graphene nanopores, firmly holds promise for future graphene-based membrane development in energy conversion devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10910585 | PMC |
http://dx.doi.org/10.1021/acs.jpcc.3c07406 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!