Alpine glacier algal bloom during a record melt year.

Front Microbiol

Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Bristol, United Kingdom.

Published: February 2024

Glacier algal blooms dominate the surfaces of glaciers and ice sheets during summer melt seasons, with larger blooms anticipated in years that experience the greatest melt. Here, we characterize the glacier algal bloom proliferating on Morteratsch glacier, Switzerland, during the record 2022 melt season, when the Swiss Alps lost three times more ice than the decadal average. Glacier algal cellular abundance (cells ml), biovolume (μm cell), photophysiology (F/F, rETR), and stoichiometry (C:N ratios) were constrained across three elevations on Morteratsch glacier during late August 2022 and compared with measurements of aqueous geochemistry and outputs of nutrient spiking experiments. While a substantial glacier algal bloom was apparent during summer 2022, abundances ranged from 1.78 × 10 to 8.95 × 10 cells ml of meltwater and did not scale linearly with the magnitude of the 2022 melt season. Instead, spatiotemporal heterogeneity in algal distribution across Morteratsch glacier leads us to propose melt-water-redistribution of (larger) glacier algal cells down-glacier and presumptive export of cells from the system as an important mechanism to set overall bloom carrying capacity on steep valley glaciers during high melt years. Despite the paradox of abundant glacier algae within seemingly oligotrophic surface ice, we found no evidence for inorganic nutrient limitation as an important bottom-up control within our study site, supporting our hypothesis above. Fundamental physical constraints may thus cap bloom carrying-capacities on valley glaciers as 21st century melting continues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10912336PMC
http://dx.doi.org/10.3389/fmicb.2024.1356376DOI Listing

Publication Analysis

Top Keywords

glacier algal
24
algal bloom
12
morteratsch glacier
12
glacier
9
2022 melt
8
melt season
8
valley glaciers
8
algal
7
melt
6
bloom
5

Similar Publications

Unlabelled: Snow algae darken the surface of snow, reducing albedo and accelerating melt. However, the impact of subsurface snow algae (e.g.

View Article and Find Full Text PDF

Cyanobacteria in winter: Seasonal dynamics of harmful algal blooms and their driving factors in boreal lakes.

Heliyon

December 2024

Groupe de Recherche en Écologie de la MRC Abitibi (GREMA), Institut de Recherche sur les Forêts, Université du Québec en Abitibi-Témiscamingue, 341 Rue Principale N, Amos, QC, J9T 2L8, Canada.

Lake cyanobacteria can overgrow and form blooms, often releasing life-threatening toxins. Harmful algal blooms (HABs) are typically caused by excess nutrients and high temperatures, but recent observations of cyanobacteria beneath the ice in boreal lakes suggest that the dynamics are more complex. This study investigates the seasonal dynamics of HABs in boreal lakes and identifies their driving factors.

View Article and Find Full Text PDF
Article Synopsis
  • Glacier-fed streams (GFS) are extreme aquatic ecosystems with little nutrients and fluctuating environments, where microorganisms predominantly form biofilms.
  • Researchers analyzed 156 metagenomes from various mountain ranges, revealing thousands of metagenome-assembled genomes (MAGs) of prokaryotes, algae, fungi, and viruses that demonstrate complex biotic interactions in these biofilms.
  • The study found that as glaciers shrink, biofilms transition from using inorganic energy sources to relying more on heterotrophy as algal biomass increases, highlighting the adaptability of microbial life in these unique ecosystems amid climate change.
View Article and Find Full Text PDF

Experimental evidence on the impact of climate-induced hydrological and thermal variations on glacier-fed stream biofilms.

FEMS Microbiol Ecol

January 2025

River Ecosystems Laboratory, Alpine and Polar Environmental Research Centre (ALPOLE), School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne, Sion, 1950, Switzerland.

Climate change is predicted to alter the hydrological and thermal regimes of high-mountain streams, particularly glacier-fed streams. However, relatively little is known about how these environmental changes impact the microbial communities in glacier-fed streams. Here, we operated streamside flume mesocosms in the Swiss Alps, where benthic biofilms were grown under treatments simulating climate change.

View Article and Find Full Text PDF

Spatiotemporal insights of phytoplankton dynamics in a northern, rural-urban lake using a 3D water quality model.

J Environ Manage

November 2024

Ville de Québec, Service de La Planification de L'aménagement et de L'environnement, 295 Boul, Québec City, Québec, G1K 3G8, Canada.

Lake St. Charles, located north of Quebec City, Canada, is a shallow fluvial lake with two distinct basins bridging rural and urban landscapes. Mainly used as a source of drinking water for 300,000 residents, the lake has faced a steady degradation in water quality due to urbanization and the discharge of domestic wastewater.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!