Untreated topical infections can become chronic, posing serious health issues. Optimal skin adherence is crucial in addressing such infections. In this context, chitosan and alginate emerge as promising candidates for use as a foundation in the development of topical hydrogels. The aim of this review is to examine the literature on topical hydrogel formulations that use chitosan and alginate as foundations, specifically in the context of topical antibacterial agents. The research methodology involves a literature review by examining articles published in databases such as PubMed, Scopus, ScienceDirect, and Google Scholar. The keywords employed during the research were "Alginate", "Chitosan", "Hydrogel", and "Antibacterial". Chitosan and alginate serve as bases in topical hydrogels to deliver various active ingredients, particularly antibacterial agents, as indicated by the search results. Both have demonstrated significant antibacterial effectiveness, as evidenced by a reduction in bacterial colony counts and an increase in inhibition zones. This strongly supports the idea that chitosan and alginate could be used together to make topical hydrogels that kill bacteria that work well. In conclusion, chitosan and alginate-based hydrogels show great potential in treating bacterial infections on the skin surface. The incorporation of chitosan and alginate into hydrogel formulations aids in retaining antibacterial agents, allowing for their gradual release over an optimal period. Therefore, hydrogels specifically formulated with chitosan and alginate have the potential to serve as a solution to address challenges in the treatment of topical bacterial infections.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10913799PMC
http://dx.doi.org/10.2147/IDR.S456403DOI Listing

Publication Analysis

Top Keywords

chitosan alginate
24
topical hydrogels
12
antibacterial agents
12
topical
8
hydrogel formulations
8
bacterial infections
8
alginate
7
chitosan
7
antibacterial
5
hydrogels
5

Similar Publications

Microneedle drug delivery system based on hyaluronic acid for improving therapeutic efficiency of hypertrophic scars.

Int J Biol Macromol

January 2025

School of Pharmacy, Xiamen Medical College, Xiamen 361023, PR China; School of Pharmacy, Fujian Medical University, Fuzhou 350108, PR China; Research Center for Sustained and Controlled Release Formulations, Xiamen Medical College, Xiamen 361023, PR China; Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen 361023, PR China. Electronic address:

Hypertrophic scar (HS) is a disease with excessive skin fibrosis and collagen disorder, which is generally caused by abnormal wound repair process after burn and trauma. Although intralesional injection of 5-fluorouracil (5-Fu) has been used in clinical treatment of HS, the patients' compliance of injection treatment is poor. In this study, a double-layer dissolution microneedle (MN) containing asiaticoside (AS) and 5-Fu was designed for the treatment of HS.

View Article and Find Full Text PDF

Chitosan/alginate polyelectrolyte complex hydrogels by additive manufacturing for in vitro 3D ovarian Cancer modeling.

Int J Biol Macromol

January 2025

BIOLab Research Group, Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM - Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy. Electronic address:

Polyelectrolyte complexes (PECs) are self-assembled systems formed from oppositely charged polymers, used to create hydrogels for cell culture. This work was aimed at additive manufacturing 3D hydrogels made of a PEC between chitosan (Cs) and alginate, as well as their investigation for in vitro 3D ovarian cancer modeling. PEC hydrogels stability in cell culture medium demonstrated their suitability for long-term cell culture applications.

View Article and Find Full Text PDF

Implant-integrated drug delivery systems that enable the release of biologically active factors can be part of an in situ tissue engineering approach to restore biological function. Implants can be functionalized with drug-loaded nanoparticles through a layer-by-layer assembly. Such coatings can release biologically active levels of growth factors.

View Article and Find Full Text PDF

Bifunctional modified bacterial cellulose-based hydrogel through sequence-dependent crosslinking towards enhanced antibacterial and cutaneous wound healing.

Int J Biol Macromol

January 2025

Department of Microbiology, College of Life Science, Key Laboratory for Agriculture Microbiology, Shandong Agricultural University, Tai'an 271018, PR China; School of Pharmacy, the Key Laboratory of Medical Antibacterial Materials of Shandong Province, Binzhou Medical University, Yantai 264003, PR China. Electronic address:

Chronic wounds caused by microbial infection have emerged as a major challenge on patients and medical health system. Bacterial cellulose (BC) characterized by its excellent biocompatibility and porous network, holds promise for addressing complex wound issues. However, lack of inherent antibacterial activity and cross-linking sites in the molecular network of BC have constrained its efficacy in hydrogel design and treatment of bacterial-infected wounds.

View Article and Find Full Text PDF

Colon cancer is a leading cause of cancer-related morbidity and mortality worldwide, necessitating advancements in therapeutic strategies to improve outcomes. Current treatment modalities, including surgery, chemotherapy, and radiation, are limited by systemic toxicity, low drug utilization rates, and off-target effects. Colon-targeted drug delivery systems (CDDS) offer a promising alternative by leveraging the colon's unique physiology, such as near-neutral pH and extended transit time, to achieve localized and controlled drug release.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!