Pigments derived from red pepper fruits are widely used in food and cosmetics as natural colorants. Nitrogen (N) is a key nutrient affecting plant growth and metabolism; however, its regulation of color-related metabolites in pepper fruit has not been fully elucidated. This study analyzed the effects of N supply (0, 250, and 400 kg N ha) on the growth, fruit skin color, and targeted and non-target secondary metabolites of field-grown pepper fruits at the mature red stage. Overall, 16 carotenoids were detected, of which capsanthin, zeaxanthin, and capsorubin were the dominant ones. N application at 250 kg ha dramatically increased contents of red pigment capsanthin, yellow-orange zeaxanthin and β-carotene, with optimum fruit yield. A total of 290 secondary metabolites were detected and identified. The relative content of most flavonoids and phenolic acids was decreased with increasing N supply. Correlation analysis showed that color parameters were highly correlated with N application rates, carotenoids, flavonoids, phenolic acids, lignans, and coumarins. Collectively, N promoted carotenoid biosynthesis but downregulated phenylpropanoid and flavonoid biosynthesis, which together determined the spectrum of red color expression in pepper fruit. Our results provide a better understanding of the impact of N nutrition on pepper fruit color formation and related physiology, and identification of target metabolites for enhancement of nutritional quality and consumer appeal.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10912300 | PMC |
http://dx.doi.org/10.3389/fpls.2024.1319680 | DOI Listing |
Plants (Basel)
December 2024
Faculty of Agriculture, Trakia University, Students Campus, 6000 Stara Zagora, Bulgaria.
This study explores the effects of varying exposure times of microelement fertilization on hydrochemical parameters, plant growth, and nutrient content in an aquaponic system cultivating L. (pepper) with ( L.).
View Article and Find Full Text PDFToxicol Rep
June 2025
Endocrinology Laboratory, Department of Zoology, University of Kalyani, West Bengal 741235, India.
Atorvastatin and fenofibrate are well-known lipid-lowering drugs. Atorvastatin acts by reducing the production of cholesterol through the inhibition of the 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMG Co-A reductase) enzyme, whereas fenofibrate is a PPAR-α agonist. Piperine is an alkaloid mostly found in black pepper fruits.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, 55181-83111, Iran.
Salinity is one of the predominant abiotic stressors that reduce plant growth, yield, and productivity. Ameliorating salt tolerance through nanotechnology is an efficient and reliable methodology for enhancing agricultural crops yield and quality. Nanoparticles enhance plant tolerance to salinity stress by facilitating reactive oxygen species detoxification and by reducing the ionic and osmotic stress effects on plants.
View Article and Find Full Text PDFMol Breed
January 2025
Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, Minamiminowa, Nagano, 399-4598 Japan.
Unlabelled: The phenotypes of chili pepper () fruit are sometimes characterized by having either smooth or wrinkled surfaces, both of which are commercially important. However, as the inheritance patterns and responsible loci have not yet been identified, it is difficult to control fruit surface traits in conventional chili pepper breeding. To obtain new insights into these aspects, we attempted to clarify the genetic regulation mechanisms responsible for the wrinkled surface of fruit from the Japanese chili pepper 'Shishito' (.
View Article and Find Full Text PDFJ Food Sci
December 2024
Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ) Unidad Sureste, Tablaje Catastral Km 5.5 Carretera Sierra Papacal-Chuburná Puerto, Parque Científico Tecnológico de, Yucatán, Mexico.
The effect of solvents with different polarities on the recovery of phytochemicals (carotenoids, capsaicinoids, and phenolic compounds) from habanero pepper (Capsicum chinense) and their association with antioxidant activity (ABTS and DPPH) was evaluated through Ultra-Performance-Liquid Chromatography coupled with a Photodiode Array Detector and a Electrospray Ionization Mass Spectrometry (UPLC-PDA-ESI-MS)-based chemometric analysis, including linear correlation, multiple linear regression, and principal component analysis (PCA). The solvent polarity scale was established according to solvent dielectric constants (ɛ). Color variation (ΔE) was used to determine the presence of carotenoids, with the highest ΔE obtained using low-polarity solvents (hexane and ethyl acetate).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!