Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Chest radiography is an essential diagnostic tool for respiratory diseases such as COVID-19, pneumonia, and tuberculosis because it accurately depicts the structures of the chest. However, accurate detection of these diseases from radiographs is a complex task that requires the availability of medical imaging equipment and trained personnel. Conventional deep learning models offer a viable automated solution for this task. However, the high complexity of these models often poses a significant obstacle to their practical deployment within automated medical applications, including mobile apps, web apps, and cloud-based platforms. This study addresses and resolves this dilemma by reducing the complexity of neural networks using knowledge distillation techniques (KDT). The proposed technique trains a neural network on an extensive collection of chest X-ray images and propagates the knowledge to a smaller network capable of real-time detection. To create a comprehensive dataset, we have integrated three popular chest radiograph datasets with chest radiographs for COVID-19, pneumonia, and tuberculosis. Our experiments show that this knowledge distillation approach outperforms conventional deep learning methods in terms of computational complexity and performance for real-time respiratory disease detection. Specifically, our system achieves an impressive average accuracy of 0.97, precision of 0.94, and recall of 0.97.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10912466 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e26801 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!