AI Article Synopsis

  • Upright branching sponges like Aplysina cauliformis are essential for coral reef habitats but are vulnerable to damage from storms, which can lead to increased fragmentation and inbreeding.
  • The occurrence of two Category 5 hurricanes in 2017 in the U.S. Virgin Islands allowed researchers to study the impact of storms on sponge recolonization and genetic diversity by analyzing samples from multiple reefs.
  • Findings revealed that storms favored sponge larval recruitment and sexual reproduction over clonality, leading to lower-than-expected fragmentation rates, while also enhancing gene flow, which may help combat inbreeding and support the genetic diversity of Caribbean sponge populations.

Article Abstract

Upright branching sponges, such as Aplysina cauliformis, provide critical three-dimensional habitat for other organisms and assist in stabilizing coral reef substrata, but are highly susceptible to breakage during storms. Breakage can increase sponge fragmentation, contributing to population clonality and inbreeding. Conversely, storms could provide opportunities for new genotypes to enter populations via larval recruitment, resulting in greater genetic diversity in locations with frequent storms. The unprecedented occurrence of two Category 5 hurricanes in close succession during 2017 in the U.S. Virgin Islands (USVI) provided a unique opportunity to evaluate whether recolonization of newly available substrata on coral reefs was due to local (e.g. re-growth of remnants, fragmentation, larval recruitment) or remote (e.g. larval transport and immigration) sponge genotypes. We sampled A. cauliformis adults and juveniles from four reefs around St. Thomas and two in St. Croix (USVI). Using a 2bRAD protocol, all samples were genotyped for single-nucleotide polymorphisms (SNPs). Results showed that these major storm events favoured sponge larval recruitment but did not increase the genetic diversity of A. cauliformis populations. Recolonization of substratum post-storms via clonality was lower (15%) than expected and instead was mainly due to sexual reproduction (85%) via local larval recruitment. Storms did enhance gene flow among and within reef sites located south of St. Thomas and north of St. Croix. Therefore, populations of clonal marine species with low pelagic dispersion, such as A. cauliformis, may benefit from increased frequency and magnitude of hurricanes for the maintenance of genetic diversity and to combat inbreeding, enhancing the resilience of Caribbean sponge communities to extreme storm events.

Download full-text PDF

Source
http://dx.doi.org/10.1111/mec.17307DOI Listing

Publication Analysis

Top Keywords

larval recruitment
16
genetic diversity
12
gene flow
8
aplysina cauliformis
8
storm events
8
recruitment
5
sponge
5
larval
5
severe hurricanes
4
hurricanes increase
4

Similar Publications

Spatially ordered recruitment of fast muscles in accordance with movement strengths in larval zebrafish.

Zoological Lett

January 2025

National Institutes of Natural Sciences, Exploratory Research Center On Life and Living Systems (ExCELLS), National Institute for Basic Biology, Okazaki, Aichi, 444-8787, Japan.

In vertebrates, skeletal muscle comprises fast and slow fibers. Slow and fast muscle cells in fish are spatially segregated; slow muscle cells are located only in a superficial region, and comprise a small fraction of the total muscle cell mass. Slow muscles support low-speed, low-force movements, while fast muscles are responsible for high-speed, high-force movements.

View Article and Find Full Text PDF

The mechanisms underlying the establishment of asymmetric structures during development remain elusive. The wing of Drosophila is asymmetric along the Anterior-Posterior (AP) axis, but the developmental origins of this asymmetry is unknown. Here, we investigate the contribution of cell recruitment, a process that drives cell fate differentiation in the Drosophila wing disc, to the asymmetric shape and pattern of the adult wing.

View Article and Find Full Text PDF

One of the consequences of the COVID-19 lockdown is that it hinders school-based dengue management interventions. This is due to the closure of schools and the limited availability of online lessons in certain schools. Conversely, the level of basic understanding that primary school children have about the condition is directly related to their likelihood of getting it and their ability to modify their behaviour to prevent it.

View Article and Find Full Text PDF

The steroid hormone 20-hydroxyecdysone inhibits RAPTOR expression by repressing Hox gene transcription to induce autophagy.

J Biol Chem

December 2024

Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China. Electronic address:

Regulatory-associated protein of TOR (RAPTOR) is a key component of TOR complex 1 (TORC1), which determines the lysosomal location and substrate recruitment of TORC1 to promote cell growth and prevent autophagy. Many studies in recent decades have focused on the posttranslational modification of RAPTOR; however, little is known about the transcriptional regulatory mechanism of Raptor. Using the lepidopteran insect cotton bollworm (Helicoverpa armigera) as model, we reveal the transcriptional regulatory mechanism of Raptor.

View Article and Find Full Text PDF

Active (i.e., intentional) fish sound production provides informative cues for numerous ecological functions, including larval recruitment or reproduction, and can facilitate monitoring and restoration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!