Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: The regulation of gait is critical to many activities of everyday life. When walking, somatosensory information obtained from mechanoreceptors throughout body is delivered to numerous supraspinal networks and used to execute the appropriate motion to meet ever-changing environmental and task demands. Aging and age-related conditions oftentimes alter the supraspinal sensorimotor control of walking, including the responsiveness of the cortical brain regions to the sensorimotor inputs obtained from the peripheral nervous system, resulting in diminished mobility in the older adult population. It is thus important to explicitly characterize such supraspinal sensorimotor elements of walking, providing knowledge informing novel rehabilitative targets. The past efforts majorly relied upon mental imagery or virtual reality to study the supraspinal control of walking. Recent efforts have been made to develop magnetic resonance imaging (MRI)-compatible devices simulating specific somatosensory and/or motor aspects of walking. However, there exists large variance in the design and functionality of these devices, and as such inconsistent functional MRI (fMRI) observations.
Methods: We have therefore completed a systematic review to summarize current achievements in the development of these MRI-compatible devices and synthesize available imaging results emanating from studies that have utilized these devices.
Results: The device design, study protocol and neuroimaging observations of 26 studies using 13 types of devices were extracted. Three of these devices can provide somatosensory stimuli, eight motor stimuli, and two both types of stimuli. Our review demonstrated that using these devices, fMRI data of brain activation can be successfully obtained when participants remain motionless and experience sensorimotor stimulation during fMRI acquisition. The activation in multiple cortical (e.g., primary sensorimotor cortex) and subcortical (e.g., cerebellum) regions has been each linked to these types of walking-related sensorimotor stimuli.
Conclusion: The observations of these publications suggest the promise of implementing these devices to characterize the supraspinal sensorimotor control of walking. Still, the evidence level of these neuroimaging observations was still low due to small sample size and varied study protocols, which thus needs to be confirmed via studies with more rigorous design.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10913571 | PMC |
http://dx.doi.org/10.1186/s12984-024-01323-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!