Recent developments and challenges in resistance-based hydrogen gas sensors based on metal oxide semiconductors.

Anal Bioanal Chem

State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, People's Republic of China.

Published: July 2024

In recent years, the energy crisis has made the world realize the importance and need for green energy. Hydrogen safety has always been a primary issue that needs to be addressed for the application and large-scale commercialization of hydrogen energy, and precise and rapid hydrogen gas sensing technology and equipment are important prerequisites for ensuring hydrogen safety. Based on metal oxide semiconductors (MOS), resistive hydrogen gas sensors (HGS) offer advantages, such as low cost, low power consumption, and high sensitivity. They are also easy to test, integrate, and suitable for detecting low concentrations of hydrogen gas in ambient air. Therefore, they are considered one of the most promising HGS. This article provides a comprehensive review of the surface reaction mechanisms and recent research progress in optimizing the gas sensing performance of MOS-based resistive hydrogen gas sensors (MOS-R-HGS). Particularly, the advancements in metal-assisted or doped MOS, mixed metal oxide (MO)-MOS composites, MOS-carbon composites, and metal-organic framework-derived (MOF)-MOS composites are extensively summarized. Finally, the future research directions and possibilities in this field are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-024-05213-zDOI Listing

Publication Analysis

Top Keywords

hydrogen gas
20
gas sensors
12
metal oxide
12
hydrogen
8
based metal
8
oxide semiconductors
8
hydrogen safety
8
gas sensing
8
resistive hydrogen
8
gas
6

Similar Publications

Acute kidney injury (AKI) has been reported to occur in 30-70% of asphyxiated neonates. Hydrogen (H) gas became a major research focus in neonatal medicine after the identification of its robust antioxidative properties. However, the ability of H gas to ameliorate AKI is unknown.

View Article and Find Full Text PDF

Preparation of crosslinked lignin-polyacrylamide hydrogel with high resistance to temperature and salinity.

Int J Biol Macromol

January 2025

Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, China. Electronic address:

In this study, we innovatively prepared a multifunctional lignin crosslinked polyacrylamide (L-cPAM) hydrogel by a sequential two-step strategy of crosslinking of lignin and crosslinked polyacrylamide (cPAM) followed by the polymerization of cPAM. The hydrogen bonding and crosslinking between the molecular chains of lignin and PAM established a rigid and porous network structure, which provided the L-cPAM hydrogel with excellent mechanical strength, thermal stability, and salinity resistance. A series of lignin dosages (0 to 30 %) were investigated during the crosslinking of lignin and PAM.

View Article and Find Full Text PDF

A catalytic system has been developed, utilizing metal nanoparticles confined within a chitosan‑carbon black composite hydrogel (M-CH/CB), aimed at improving ease of use and recovery in catalytic processes. The M-CH/CBs were characterized by XRD, SEM, and EDX, the M-CH/CB system demonstrated exceptional catalytic activity in producing hydrogen gas (H) from water and methanol, and in reducing several hazardous materials including 2-nitrophenol (2-NP), 4-nitrophenol (4-NP), 2,6-dinitrophenol (2,6-DNP), acridine orange (ArO), methyl orange (MO), congo red (CR), methylene blue (MB), and potassium ferricyanide (PFC). Among the tested nanocatalysts, CH/CB showed the highest efficiency for H₂ production, while Fe-CH/CB excelled in contaminant reduction (7.

View Article and Find Full Text PDF

Preparation of nitrogen-doped biocarbon from sewage sludge and pine sawdust for superior hydrogen sulfide removal: Experimental and DFT studies.

Environ Res

January 2025

Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of High-Quality Recycling of End-of-Life New Energy Devices, Guangzhou 510640, China. Electronic address:

Hydrogen sulfide (HS) is a major air pollutant posing a serious threat to both the environment and public health. In this study, a novel nitrogen-rich biocarbon that effectively removes HS was produced from a mixture of sewage sludge and pine sawdust using melamine as nitrogen source. Compared with pristine biocarbons, nitrogen (N)-doped biocarbons possessed an adjustable porosity, e.

View Article and Find Full Text PDF
Article Synopsis
  • Oral mucosal wounds are susceptible to inflammation and complications due to exposure to microorganisms, which can hinder daily activities and diminish quality of life.
  • A novel therapeutic nanoplatform, DATS@Arg-EA-SA, has been developed to target these wounds by combining guanidinated dendritic peptides with diallyl trisulfide (DATS), providing both antimicrobial and anti-inflammatory effects.
  • This nanoplatform effectively eliminates various bacteria, including drug-resistant strains like MRSA, and enhances healing by promoting the transition of inflammatory cells and alleviating pain, making it a promising solution for oral wound treatment.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!