Earthquakes pose substantial threats to communities worldwide. Understanding how people respond to the fast-changing environment during earthquakes is crucial for reducing risks and saving lives. This study aims to study people's protective action decision-making in earthquakes by leveraging explainable machine learning and video data. Specifically, this study first collected real-world CCTV footage and video postings from social media platforms, and then identified and annotated changes in the environment and people's behavioral responses during the M7.1 2018 Anchorage earthquake. By using the fully annotated video data, we applied XGBoost, a widely-used machine learning method, to model and forecast people's protective actions (e.g., drop and cover, hold on, and evacuate) during the earthquake. Then, explainable machine learning techniques were used to reveal the complex, nonlinear relationships between different factors and people's choices of protective actions. Modeling results confirm that social and environmental cues played critical roles in affecting the probability of different protective actions. Certain factors, such as the earthquake shaking intensity and number of people shown in the environment, displayed evident nonlinear relationships with the probability of choosing to evacuate. These findings can help emergency managers and policymakers design more effective protective action recommendations during earthquakes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10914816 | PMC |
http://dx.doi.org/10.1038/s41598-024-55584-7 | DOI Listing |
Viruses
November 2024
Department of Infectious Diseases, Molecular Virology, Section Virus-Host Interactions, Heidelberg University, 69120 Heidelberg, Germany.
The study of hepatitis C virus (HCV) replication in cell culture is mainly based on cloned viral isolates requiring adaptation for efficient replication in Huh7 hepatoma cells. The analysis of wild-type (WT) isolates was enabled by the expression of SEC14L2 and by inhibitors targeting deleterious host factors. Here, we aimed to optimize cell culture models to allow infection with HCV from patient sera.
View Article and Find Full Text PDFViruses
November 2024
Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel.
In this study, we introduce a novel approach that integrates interpretability techniques from both traditional machine learning (ML) and deep neural networks (DNN) to quantify feature importance using global and local interpretation methods. Our method bridges the gap between interpretable ML models and powerful deep learning (DL) architectures, providing comprehensive insights into the key drivers behind model predictions, especially in detecting outliers within medical data. We applied this method to analyze COVID-19 pandemic data from 2020, yielding intriguing insights.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Information Technology, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
[...
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Computer Science, School of Computing and Engineering, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK.
Climate change caused by greenhouse gas (GHG) emissions is an escalating global issue, with the transportation sector being a significant contributor, accounting for approximately a quarter of all energy-related GHG emissions. In the transportation sector, vehicle emissions testing is a key part of ensuring compliance with environmental regulations. The Vehicle Certification Agency (VCA) of the UK plays a pivotal role in certifying vehicles for compliance with emissions and safety standards.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!