The combination of a good quality embryo and proper maternal health factors promise higher chances of a successful in vitro fertilization (IVF) procedure leading to clinical pregnancy and live birth. Of these two factors, selection of a good embryo is a controllable aspect. The current gold standard in clinical practice is visual assessment of an embryo based on its morphological appearance by trained embryologists. More recently, machine learning has been incorporated into embryo selection "packages". Here, we report EVATOM: a machine-learning assisted embryo health assessment tool utilizing an optical quantitative phase imaging technique called artificial confocal microscopy (ACM). We present a label-free nucleus detection method with, to the best of our knowledge, novel quantitative embryo health biomarkers. Two viability assessment models are presented for grading embryos into two classes: healthy/intermediate (H/I) or sick (S) class. The models achieve a weighted F1 score of 1.0 and 0.99 respectively on the in-distribution test set of 72 fixed embryos and a weighted F1 score of 0.9 and 0.95 respectively on the out-of-distribution test dataset of 19 time-instances from 8 live embryos.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10915136PMC
http://dx.doi.org/10.1038/s42003-024-05960-wDOI Listing

Publication Analysis

Top Keywords

embryo health
12
machine learning
8
assisted embryo
8
health assessment
8
assessment tool
8
weighted score
8
embryo
7
evatom optical
4
optical label-free
4
label-free machine
4

Similar Publications

Background: The following case report details the genetic evaluation and treatment of a 30-year-old male with a history of asthenoteratospermia and notable abnormalities of the sperm flagella.

Methods: Genetic evaluation was performed via a multi-gene panel of genes associated with primary ciliary dyskinesia and multiple morphological abnormalities of the sperm flagella (MMAF) prior to the couple's in vitro fertilization (IVF) cycle.

Results: Genetic evaluation was performed via a multi-gene panel of genes associated with primary ciliary dyskinesia and multiple morphological abnormalities of the sperm flagella (MMAF) prior to the couple's in vitro fertilization (IVF) cycle.

View Article and Find Full Text PDF

Unlocking a Decade of Research on Embryo-Derived Extracellular Vesicles: Discoveries Made and Paths Ahead.

Stem Cell Rev Rep

January 2025

Department of Internal Medicine, Reproduction and Population Health, Faculty of Veterinary Medicine, University of Ghent, Salisburylaan 133, Merelbeke, B-9820, Belgium.

Over the past decade, research on embryo-derived extracellular vesicles (EVs) has unveiled their critical roles in embryonic development and intercellular communication. EVs secreted by embryos are nanoscale lipid bilayer vesicles that carry bioactive cargo, including proteins, lipids, RNAs, and DNAs, reflecting the physiological state of the source cells. These vesicles facilitate paracrine and autocrine signaling, influencing key processes such as cell differentiation, embryo viability, and endometrial receptivity.

View Article and Find Full Text PDF

A refined method for high-purity isolation of uterine glandular epithelial cells in mouse.

J Biochem

January 2025

Department of Comparative and Experimental Medicine, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan.

The uterine endometrium consists of luminal epithelium, glandular epithelium, and stromal cells, with uterine glands playing a pivotal role in pregnancy success among mammals. Uterine glands secrete essential factors that regulate embryo development and implantation; however, their cellular biology remains poorly understood. This study presents a refined method for isolating three distinct endometrial cell types with high purity, with a specific emphasis on glandular epithelial cells.

View Article and Find Full Text PDF

Objective: Despite numerous studies on the causes of recurrent pregnancy loss (RPL), nearly half of cases remain unidentified, which determines the research relevance. This study aims to investigate microchromosomal variations in the fetal genome associated with the development of idiopathic RPL.

Methods: The research was supported by the Centre for Molecular Medicine and the Research Institute of Obstetrics, Gynecology and Perinatology and conducted over a period of 2 years.

View Article and Find Full Text PDF

Disruption of extracellular pH and proton-sensing can profoundly impact cellular and protein functions, leading to developmental defects. To visualize changes in extracellular pH in the developing embryo, we generated a zebrafish transgenic line that ubiquitously expresses the ratiometric pH-sensitive fluorescent protein pHluorin2, tethered to the extracellular face of the plasma membrane using a glycosylphosphatidylinositol (GPI) anchor. Monitoring of pHluorin2 with ratiometric fluorescence revealed dynamic and discrete domains of extracellular acidification over the first 72 h of embryonic development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!