Quantifying mass transport limitations in a microfluidic CO electrolyzer with a gas diffusion cathode.

Commun Chem

Laboratory of Renewable Energy Science and Engineering, EPFL, Station 9, Lausanne, 1015, Switzerland.

Published: March 2024

A gas diffusion electrode (GDE) based CO electrolyzer shows enhanced CO transport to the catalyst surface, significantly increasing current density compared to traditional planar immersed electrodes. A two-dimensional model for the cathode side of a microfluidic CO to CO electrolysis device with a GDE is developed. The model, validated against experimental data, examines key operational parameters and electrode materials. It predicts an initial rise in CO partial current density (PCD), peaking at 75 mA cm at -1.3 V vs RHE for a fully flooded catalyst layer, then declining due to continuous decrease in CO availability near the catalyst surface. Factors like electrolyte flow rate and CO gas mass flow rate influence PCD, with a trade-off between high CO PCD and CO conversion efficiency observed with increased CO gas flow. We observe that a significant portion of the catalyst layer remains underutilized, and suggest improvements like varying electrode porosity and anisotropic layers to enhance mass transport and CO PCD. This research offers insights into optimizing CO electrolysis device performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10914812PMC
http://dx.doi.org/10.1038/s42004-024-01122-5DOI Listing

Publication Analysis

Top Keywords

mass transport
8
gas diffusion
8
catalyst surface
8
current density
8
electrolysis device
8
catalyst layer
8
flow rate
8
quantifying mass
4
transport limitations
4
limitations microfluidic
4

Similar Publications

Low molecular weight galactomannan (LMGM), a soluble dietary fibre derived from guar gum, is recognized for its prebiotic functions, including promoting the growth of beneficial intestinal bacteria and the production of short-chain fatty acids, but the mechanism of alleviating diarrhea is not fully understood. This study established an acute diarrhea mouse model using senna leaf decoction and evaluated the therapeutic effects of LMGM by monitoring diarrhea scores, loose stool prevalence, intestinal tissue pathology and gene expression, and gut microbiota composition and metabolisms. The results indicated that LMGM significantly reduced diarrhea scores and loose stool prevalence within two hours post-treatment.

View Article and Find Full Text PDF

Porous Silicon on Paper: A Platform for Quantitative Rapid Diagnostic Tests.

ACS Appl Mater Interfaces

January 2025

Interdisciplinary Material Science Program, Vanderbilt University, Nashville, Tennessee 37235, United States.

Porous silicon (PSi) thin films on silicon substrates have been extensively investigated in the context of biosensing applications, particularly for achieving label-free optical detection of a wide range of analytes. However, mass transport challenges have made it difficult for these biosensors to achieve rapid response times and low detection limits. In this work, we introduce an approach for improving the efficiency of molecule transport in PSi by using open-ended PSi membranes atop paper substrates in a flow-through sensor scheme.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is a common malignancy and generally develops from liver cirrhosis (LC), which is primarily caused by the chronic hepatitis B (CHB) virus. Reliable liquid biopsy methods for HCC screening in high-risk populations are urgently needed. Here, we establish a porous silicon-assisted laser desorption ionization mass spectrometry (PSALDI-MS) technology to profile metabolite information hidden in human serum in a high throughput manner.

View Article and Find Full Text PDF

Innovative strategies for designing and constructing efficient fuel cell electrocatalysts.

Chem Commun (Camb)

January 2025

School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.

Polymer electrolyte membrane fuel cells (PEMFCs) are one of the most promising energy conversion devices due to their high efficiency and zero emission; however, two major challenges, high cost and short lifetime, have been hindering the commercialization of fuel cells. Achieving low-Pt or non-precious metal oxygen reduction reaction (ORR) electrocatalysts is one of the main research ideas in this field. In this review, the degradation mechanism of Pt-based catalysts is firstly explained and elucidated, and then five strategies are suggested for the reduction of Pt usage without loss of activity and durability: modulation of metal-support interactions, optimization of local ionomers and mass transport, modulation of composition, modulation of structure, and multi-site synergistic effects.

View Article and Find Full Text PDF

Droplet-Based EPR Spectroscopy for Real-Time Monitoring of Liquid-Phase Catalytic Reactions.

Small Methods

January 2025

Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland.

In situ monitoring is essential for catalytic process design, offering real-time insights into active structures and reactive intermediates. Electron paramagnetic resonance (EPR) spectroscopy excels at probing geometric and electronic properties of paramagnetic species during reactions. Yet, state-of-the-art liquid-phase EPR methods, like flat cells, require custom resonators, consume large amounts of reagents, and are unsuited for tracking initial kinetics or use with solid catalysts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!