Worldwide, states are gazetting new Marine Protected Areas (MPAs) to meet the international commitment of protecting 30% of the seas by 2030. Yet, protection benefits only come into effect when an MPA is implemented with activated regulations and actively managed through continuous monitoring and adaptive management. To assess if actively managed MPAs are the rule or the exception, we used the Mediterranean and Black Seas as a case study, and retrieved information on monitoring activities for 878 designated MPAs in ten European Union (EU) countries. We searched for scientific and grey literature that provides information on the following aspects of MPA assessment and monitoring: ecological (e.g., biomass of commercially exploited fish), social (e.g., perceptions of fishers in an MPA), economic (e.g., revenue of fishers) and governance (e.g., type of governance scheme). We also queried MPA authorities on their past and current monitoring activities using a web-based survey through which we collected 123 responses. Combining the literature review and survey results, we found that approximately 16% of the MPA designations (N = 878) have baseline and/or monitoring studies. Most monitoring programs evaluated MPAs based solely on biological/ecological variables and fewer included social, economic and/or governance variables, failing to capture and assess the social-ecological dimension of marine conservation. To increase the capacity of MPAs to design and implement effective social-ecological monitoring programs, we recommend strategies revolving around three pillars: funding, collaboration, and technology. Following the actionable recommendations presented herein, MPA authorities and EU Member States could improve the low level of MPA monitoring to more effectively reach the 30% protection target delivering benefits for biodiversity conservation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2024.120476 | DOI Listing |
PeerJ
December 2024
Departamento de Biologia & Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Aveiro, Portugal.
The Mediterranean Sea is recognized as one of the most threatened marine environments due to pollution, the unintentional spread of invasive species, and habitat destruction. Understanding the biodiversity patterns within this sea is crucial for effective resource management and conservation planning. During a research cruise aimed at assessing biodiversity near desalination plants in the vicinity of Larnaca, Cyprus, conducted as part of the WATER-MINING project (Horizon 2020), specimens of the tanaidacean genus were collected.
View Article and Find Full Text PDFBehav Ecol
December 2024
Faculty of Biology and Environmental Protection, Department of Experimental Zoology and Evolutionary Biology, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland.
Nest fumigation behavior involves the incorporation of fresh green plant fragments that contain ectoparasite-repellent volatile compounds into birds' nests. This behavior is relatively rare among bird species, and there is ongoing debate about whether it benefits parental breeding success. In this study, we experimentally tested whether the inclusion of aromatic-herbal plant fragments in the nests of great tits affects the physiological condition of nestlings, as indicated by blood levels of hematocrit, hemoglobin, glucose, and body condition indices, such as weight and wing length.
View Article and Find Full Text PDFChemosphere
December 2024
Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China; Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, B34, Semenyih, 43500, Selangor, Malaysia.
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/policies/article-withdrawal).
View Article and Find Full Text PDFChemosphere
December 2024
Universidad Aut'onoma de Chile, Chile.
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/policies/article-withdrawal).
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Biochemistry and Nutrition Division, ICAR- Central Institute of Fisheries Technology, Cochin 682029, Kerala, India. Electronic address:
In the present study, biopolymer (chitosan and alginate)-reinforced rhamnolipid nanoparticles were prepared and represented as 'ALG-RHLP-NPs' and 'CHI-RHLP-NPs'. The sizes of the nanoparticles ranged from 150 to 300 nm. The encapsulation efficiencies of ALG-RHLP-NPs and CHI-RHLP-NPs were found to be 81.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!