Tomato fruit consumption is influenced by flavor and nutrient quality. In the present study, we investigate the impact of water saving irrigation (WSI) as a pre-harvest management on flavor and nutrient quality of tomato fruit. Our results demonstrate that WSI-treated tomato fruit exhibited improved sensory scores as assessed by a taste panel, accompanied by elevated levels of SlGLK2 expression, sugars, acids, and carotenoid contents compared to non-treated fruit. Notably, WSI treatment significantly enhanced the development of chloroplast and plastoglobulus in chromoplast, which served as carotenoid storage sites and upregulated the expression of carotenoid biosynthetic genes. Furthermore, integrated transcriptome and metabolome analysis revealed heightened expression of sugar and flavonoid metabolism pathways in WSI-treated tomato fruit. Remarkably, the master regulator SlMYB12 displayed a substantially increased expression due to WSI. These findings suggest that WSI is an effective and sustainable approach to enhance the pigments metabolism and storage capacity as well as the organoleptic characteristics and nutritional value of tomato fruit, offering a win-win solution for both water conservation and quality improvement in agro-food production.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2024.108477DOI Listing

Publication Analysis

Top Keywords

tomato fruit
24
water saving
8
saving irrigation
8
pigments metabolism
8
metabolism storage
8
storage capacity
8
flavor nutrient
8
nutrient quality
8
wsi-treated tomato
8
fruit
7

Similar Publications

The isolated Aspergillus flavus NSRN22 was used for green synthesis of silver and selenium nanoparticles (AgNPs and SeNPs). New food packaging films produced by combining each type of NPs with chitosan (CS) or sodium alginate (SA) were characterized. Transmission electron microscopy revealed that the average particle size was lower in case of AgNPs (9 to 14.

View Article and Find Full Text PDF

Development and reproduction of Grapholita molesta (Lepidoptera: Tortricidae) on the 3 artificial diets in the laboratory.

J Econ Entomol

January 2025

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.

Grapholita molesta (Busck) (Lepidoptera: Tortricidae) is a major pest of many fruit trees. The large-scale artificial propagation technology of the insect is the basis for the field application of the sterile insect technique and biological control products based on host mass reproduction. However, a low-cost diet with easily accessible materials remains lacking.

View Article and Find Full Text PDF

Marker-assisted selection in segregating populations of tomatoes for resistance to TYLCV, ToMV, and Fusarium wilt.

Mol Biol Rep

January 2025

Department of Agronomy and Plant Breeding Sciences, Agricultural College of Aburaihan, University of Tehran, Pakdasht, Iran.

Background: Tomato yellow leaf curl virus (TYLCV), tomato mosaic virus (ToMV), and Fusarium wilt are three of tomatoes' most important viral and fungal diseases.

Methods And Results: In this study, the application of molecular markers associated with tomato yellow leaf curl virus resistance gene (Ty1), tomato mosaic virus resistance gene (Tm2), and Fusarium wilt resistance gene (I-1) (linked marker) were evaluated. In order to optimize and use SNP markers (by HRM diagnostic method) and SCAR markers, segregating populations of tomatoes were produced by self-pollination of commercial hybrid cultivars.

View Article and Find Full Text PDF

Tomato (Jinglu 6335) was selected for assessing the impact of varying fertilizer (F:N-PO-KO) and aeration rates on crop quality, as well as water and fertilizer utilization efficiency during the cyclic aeration subsurface drip irrigation process. Four aeration treatments (O1, O2, O3, and S, representing aeration ratios of 16.25%, 14.

View Article and Find Full Text PDF

The primary aim of this research was to study the effectiveness of various strains of antagonist microorganisms and biological preparations against , in addition to their impact on the quality of tomato fruits and crop structure. Four microorganism strains and three registered environmentally safe nematicides were used in the experiment presented herein. The results showed that the strains F-22BK/6 and F-22BK/4 had the greatest biological efficacy, reducing the number of galls on tomato plants by 91.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!