Can the concentration of environmentally persistent free radicals describe its toxicity to Caenorhabditis elegans? Evidence provided by neurotoxicity and oxidative stress.

J Hazard Mater

Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China. Electronic address:

Published: May 2024

Environmentally persistent free radicals (EPFRs) are emerging pollutants stabilized on or inside particles. Although the toxicity of EPFR-containing particles has been confirmed, the conclusions are always ambiguous because of the presence of various compositions. A clear dose-response relationship was always challenged by the fact that the concentrations of these coexisted components simultaneously changed with EPFR concentrations. Without these solid dose-response pieces of evidence, we could not confidently conclude the toxicity of EPFRs and the description of potential EPFR risks. In this study, we established a particle system with a fixed catechol concentration but different reaction times to obtain particles with different EPFR concentrations. Caenorhabditis elegans (C. elegans) in response to different EPFR concentrations was systematically investigated at multiple biological levels, including behavior observations and biochemical and transcriptome analyses. Our results showed that exposure to EPFRs disrupted the development and locomotion of C. elegans. EPFRs cause concentration-dependent neurotoxicity and oxidative damage to C. elegans, which could be attributed to reactive oxygen species (ROS) promoted by EPFRs. Furthermore, the expression of key genes related to neurons was downregulated, whereas antioxidative genes were upregulated. Overall, our results confirmed the toxicity from EPFRs and EPFR concentration as a rational parameter to describe the extent of toxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2024.133823DOI Listing

Publication Analysis

Top Keywords

epfr concentrations
12
environmentally persistent
8
persistent free
8
free radicals
8
neurotoxicity oxidative
8
toxicity epfrs
8
epfrs
6
toxicity
5
epfr
5
concentration environmentally
4

Similar Publications

Environmentally persistent free radicals (EPFRs) are combustion products present in substantial numbers on atmospheric particulate matter with half-lives of days to years. The mechanisms linking EPFR exposure and respiratory diseases are unclear, but likely involve oxidative stress. We investigated the mechanisms by which EPFR exposure impact on well-differentiated primary human nasal epithelial cells from subjects sensitive or resistant to oxidant stressors, cultured at an air-liquid interface.

View Article and Find Full Text PDF

Formation and evolution of environmentally persistent free radicals in charcoal and soot generated from biomass materials.

J Hazard Mater

February 2025

State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China.

Environmentally persistent free radicals (EPFRs) are emerging pollutants that are highly reactive and toxic, posing potential health risks. Biomass burning is a significant source of EPFRs, but there has been a notable gap in research regarding the EPFRs present in charcoal and soot produced from the same combustion process. Our study detected EPFRs in both charcoal and soot, but there were significant differences in their characteristics.

View Article and Find Full Text PDF

Environmentally persistent free radicals stimulate CYP2E1-mediated generation of reactive oxygen species at the expense of substrate metabolism.

Drug Metab Dispos

January 2025

Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Science Center, New Orleans, Louisiana; The Stanley S. Scott Cancer Center, Louisiana State University Health Science Center, New Orleans, Louisiana. Electronic address:

Environmentally persistent free radicals (EPFRs) are a recently recognized component of particulate matter that cause respiratory and cardiovascular toxicity. The mechanism of EPFR toxicity appears to be related to their ability to generate reactive oxygen species (ROS), causing oxidative damage. EPFRs were shown to affect cytochrome P450 (P450) function, inducing the expression of some forms through the Ah receptor.

View Article and Find Full Text PDF

Environmentally persistent free radicals (EPFRs) generated on particles under irradiation in water have attracted particular attention, and their formation mechanisms are not well understood. This study investigated the photoformation of EPFRs on both actual samples collected from an oil production plant in Panjin, Liaoning, China, and simulated Fe(III)-montmorillonite samples in water. The EPFRs detected on actual samples were not easily generated compared with those in the soil or in the air, based on the concentrations of identified PAHs.

View Article and Find Full Text PDF

Environmentally persistent free radicals (EPFRs) and polycyclic aromatic hydrocarbons (PAHs) are persistent pollutants in atmospheric particulate matter that are detrimental to human health. This study collected atmospheric particulate matter during and after the spring festival travel season in Tainan, Taiwan, from various locations and analyzed the carbon composition and PAH isomeric ratios to identify the sources. In this study, EPFR concentrations were measured using electron paramagnetic resonance spectroscopy, with the highest concentration found to be 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!