Photoenzymatic intermolecular hydroalkylations of olefins are highly enantioselective for chiral centers formed during radical termination but poorly selective for centers set in the C-C bond-forming event. Here, we report the evolution of a flavin-dependent "ene"-reductase to catalyze the coupling of α,α-dichloroamides with alkenes to afford α-chloroamides in good yield with excellent chemo- and stereoselectivity. These products can serve as linchpins in the synthesis of pharmaceutically valuable motifs. Mechanistic studies indicate that radical formation occurs by exciting a charge-transfer complex templated by the protein. Precise control over the orientation of molecules within the charge-transfer complex potentially accounts for the observed stereoselectivity. The work expands the types of motifs that can be prepared using photoenzymatic catalysis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11622607 | PMC |
http://dx.doi.org/10.1021/jacs.4c00927 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
The University of Oklahoma, Chemistry and Biochemistry, 101 Stephenson Parkway, 73019, Norman, UNITED STATES OF AMERICA.
Phototherapy - which includes photothermal therapy (PTT) and photodynamic therapy (PDT) - has evoked interest as a promising cancer treatment modality on account of its noninvasiveness, spatiotemporal precision, and minimal side effects. C. Wang et al.
View Article and Find Full Text PDFACS Cent Sci
January 2025
Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China.
Herein, we report a visible-light-induced charge-transfer-complex-enabled dicarboxylation and deuterocarboxylation of C=C bonds with oxalate as a masked CO source under catalyst-free conditions. In this reaction, we disclosed the first example that the tetrabutylammonium oxalate could be able to aggregate with aryl substrates via π-cation interactions to form the charge transfer complexes, which subsequently triggers the single electron transfer from the oxalic dianion to the ammonium countercation under irradiation of 450 nm bule LEDs, releasing CO and CO radical anions. Diverse alkenes, dienes, trienes, and indoles, including challenging trisubstituted olefins, underwent dicarboxylation and anti-Markovnikov deuterocarboxylation with high selectivity to access valuable 1,2- and 1,4-dicarboxylic acids as well as indoline-derived diacids and β-deuterocarboxylic acids under mild conditions.
View Article and Find Full Text PDFAdv Mater
January 2025
Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China.
Developing purely organic room-temperature magnetic semiconductors has been a long-sought goal in the material community toward the simultaneous control of spin and charge. Organic cocrystals, known for their structural versatility and multifunctionality, are ideal candidates for these magnetoelectric coupling applications. However, organic room-temperature magnetic semiconductor cocrystals have rarely been reported, and their mechanisms remain poorly understood due to the complexity of cocrystal structures.
View Article and Find Full Text PDFSmall
January 2025
Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, P. R. China.
Near-infrared light response catalysts have received great attention in renewable solar energy conversion, energy production, and environmental purification. Here, near-infrared photodegradation is successfully achieved in rare earth single atom anchored NaYF@g-CN heterojunctions by the synergistic effect of Z-scheme heterojunction and antenna of rare earth single atoms. The UV-vis light emitted by Tm can not only be directly absorbed by g-CN to generate electron-hole pairs, realizing efficient energy transfer, but also be absorbed by NaYF substrate, and generating photo-generated electrons at its impurity level, transferring the active charge to the valence band of g-CN, forming a Z-scheme heterojunction and further improving the photocatalytic efficiency.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Shanghai Jiao Tong University, Frontiers Science Center for Transformative Molecules, CHINA.
A photoelectrocatalytic method is presented that achieves direct decarboxylative C(sp3)-P coupling, providing a modular route to alkylphosphinates and alkylphosphonates from readily available carboxylic acids. The success of this reaction hinges on the synergistic combination of electrochemical anodic oxidation and photocatalytic ligand to metal charge transfer (LMCT) decarboxylation. By employing P(III) reagents as limiting reagents, our approach enables efficient alkyl modification of medicinally important nucleosides and complex molecules derived phosphonites, which were challenging to access by existing methods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!