A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

3D Printed Ion-Responsive Personalized Transdermal Patch. | LitMetric

3D Printed Ion-Responsive Personalized Transdermal Patch.

ACS Appl Mater Interfaces

State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.

Published: March 2024

Microneedle patches are easy-to-use medical devices for transdermal administration. However, the insufficient insertion of microneedles due to the gap between planar patches and contoured skin affects drug delivery. Herein, we formulate a prepolymer for high-fidelity three-dimensional (3D) printed personalized transdermal patches. With the excellent photoinitiation ability of 2-(4-methoxystyryl)-4,6-bis(trichloromethyl)-1,3,5-triazine (Tz), a high-fidelity and precise microneedle patch is successfully fabricated. Upon irradiation of the white illuminator, the doped gold nanoparticles (AuNPs) in the patch release heat and promisingly induce sweat production. With the introduction of Na, the dominant component of sweat, the curvature of the produced transdermal patch is observed due to the ion-induced network rearrangement. The alkanethiol-stabilized AuNP with an end group of a carboxyl group causes controlled drug release behavior. Furthermore, the irradiation-induced photothermal heating of AuNP can facilitate the sustainability of drug release thanks to the substantially increased particle size of AuNP. These findings demonstrate that the developed prepolymer is a promising candidate for the production of transdermal patches fitting the curvature of the body surface.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c18036DOI Listing

Publication Analysis

Top Keywords

personalized transdermal
8
transdermal patch
8
transdermal patches
8
drug release
8
transdermal
5
printed ion-responsive
4
ion-responsive personalized
4
patch
4
patch microneedle
4
patches
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!