Surface lipids on pathogenic mycobacteria modulate infection outcomes by regulating host immune responses. Phenolic glycolipid (PGL) is a host-modulating surface lipid that varies among clinical strains. PGL is also found in , where it promotes infection of zebrafish through effects on the innate immune system. Given the important role this lipid plays in the host-pathogen relationship, tools for profiling its abundance, spatial distribution, and dynamics are needed. Here, we report a strategy for imaging PGL in live mycobacteria using bioorthogonal metabolic labeling. We functionalized the PGL precursor -hydroxybenzoic acid (HB) with an azide group (3-azido HB). When fed to mycobacteria, 3-azido HB was incorporated into the cell surface, which could then be visualized the bioorthogonal conjugation of a fluorescent probe. We confirmed that 3-azido HB incorporates into PGL using mass spectrometry methods and demonstrated selectivity for PGL-producing and strains. Finally, we applied this metabolic labeling strategy to study the dynamics of PGL within the mycobacterial membrane. This new tool enables visualization of PGL that may facilitate studies of mycobacterial pathogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10949201PMC
http://dx.doi.org/10.1021/acschembio.3c00724DOI Listing

Publication Analysis

Top Keywords

metabolic labeling
12
bioorthogonal metabolic
8
phenolic glycolipid
8
pgl
7
labeling virulence
4
virulence factor
4
factor phenolic
4
mycobacteria
4
glycolipid mycobacteria
4
mycobacteria surface
4

Similar Publications

Seipin Deficiency Impairs Motor Coordination in Mice by Compromising Spinal Cord Myelination.

Neuromolecular Med

January 2025

Department of Anatomy, School of Basic Medical Sciences, Shanxi Medical University, No 56, Xinjian Nan Road, Taiyuan, 030001, Shanxi, China.

The integrity of the myelin sheath of the spinal cord (SC) is essential for motor coordination. Seipin is an endoplasmic reticulum transmembrane protein highly expressed in adipose tissue and motor neurons in the SC. It was reported Seipin deficiency induced lipid dysregulation and neurobehavioral deficits, but the underlying mechanism, especially in SC, remains to be elucidated.

View Article and Find Full Text PDF

Tuning of sulfur flows and sulfur seed metabolism in oilseed rape facing sulfate limited conditions.

J Exp Bot

January 2025

Normandie Univ, UNICAEN, INRAe, UMR 950 Ecophysiologie Végétale, Agronomie & nutritions NCS, SFR Normandie Végétal (FED4277), 14032 Caen CEDEX 05, France.

The response of oilseed rape to sulfur (S) restriction usually consists of increasing the components of S utilization efficiency (absorption, assimilation and remobilization) to provide S to seeds. However, source-sink relationships and S management in developing seeds under sulfate restriction are poorly understood. To address this, impacts of sulfate restrictions applied at "visible bud" or "start of pod filling" stages were studied with two genotypes (Aviso, Capitol) showing similar seed yield but higher seed weight and lower number of seeds per plant for Capitol under non-limited conditions.

View Article and Find Full Text PDF

Tomato (Solanum lycopersicum L.) is an important model plant whose fleshy fruit consists of well-differentiated tissues. Recently it was shown that these tissues develop hypoxia during fruit development and ripening.

View Article and Find Full Text PDF

The polymerase gamma (POLG) gene mutation is associated with mitochondria and metabolism disorders, resulting in heterogeneous responses to immunological activation and posing challenges for mitochondrial disease therapy. Optical metabolic imaging captures the autofluorescent signal of two coenzymes, NADH and FAD, and offers a label-free approach to detect cellular metabolic phenotypes, track mitochondria morphology, and quantify metabolic heterogeneity. In this study, fluorescence lifetime imaging (FLIM) of NAD(P)H and FAD revealed that POLG mutator macrophages exhibit a decreased NAD(P)H lifetime, and optical redox ratio compared to the wild-type macrophages, indicating an increased dependence on glycolysis.

View Article and Find Full Text PDF

Cryopreservation is a widely used technique to preserve biological samples for extended periods of time at low temperatures. Even though it is known to have significant effects on cell viability, its effect on their metabolism remains unexplored. Studying how cryopreservation influences the metabolism of cells is important to guarantee the reliability of samples transported between sites for analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!