SegX-Net: A novel image segmentation approach for contrail detection using deep learning.

PLoS One

Department of Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia.

Published: March 2024

Contrails are line-shaped clouds formed in the exhaust of aircraft engines that significantly contribute to global warming. This paper confidently proposes integrating advanced image segmentation techniques to identify and monitor aircraft contrails to address the challenges associated with climate change. We propose the SegX-Net architecture, a highly efficient and lightweight model that combines the DeepLabV3+, upgraded, and ResNet-101 architectures to achieve superior segmentation accuracy. We evaluated the performance of our model on a comprehensive dataset from Google research and rigorously measured its efficacy with metrics such as IoU, F1 score, Sensitivity and Dice Coefficient. Our results demonstrate that our enhancements have significantly improved the efficacy of the SegX-Net model, with an outstanding IoU score of 98.86% and an impressive F1 score of 99.47%. These results unequivocally demonstrate the potential of image segmentation methods to effectively address and mitigate the impact of air conflict on global warming. Using our proposed SegX-Net architecture, stakeholders in the aviation industry can confidently monitor and mitigate the impact of aircraft shrinkage on the environment, significantly contributing to the global fight against climate change.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10914276PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0298160PLOS

Publication Analysis

Top Keywords

image segmentation
12
global warming
8
climate change
8
segx-net architecture
8
iou score
8
mitigate impact
8
segx-net
4
segx-net novel
4
novel image
4
segmentation
4

Similar Publications

Background: In neuroscience, Ca imaging is a prevalent technique used to infer neuronal electrical activity, often relying on optical signals recorded at low sampling rates (3 to 30 Hz) across multiple neurons simultaneously. This study investigated whether increasing the sampling rate preserves critical information that may be missed at slower acquisition speeds.

Methods: Primary neuronal cultures were prepared from the cortex of newborn pups.

View Article and Find Full Text PDF

Premature Coronary Artery Disease Presenting as STEMI in a Teenager.

J Investig Med High Impact Case Rep

January 2025

LSU Health Shreveport, LA, USA.

An 18-year-old teenager with significant atherosclerotic cardiovascular disease (ASCVD) risk factors developed acute chest pain. His electrocardiogram showed inferior ST-segment elevations. Emergent coronary angiogram revealed complete thrombotic occlusion of the right coronary artery.

View Article and Find Full Text PDF

Six novel phages belonging to the family were isolated using as a host. Phages MuffinTheCat, Badulia, DesireeRose, Bee17, SCoupsA, and LuzDeMundo were purified from environmental samples by students participating in the Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) program at Alliance University, New York. The phages have linear dsDNA genomes 15,438-15,636 bp with 112-120 bp inverted terminal repeats.

View Article and Find Full Text PDF

For change detection in synthetic aperture radar (SAR) imagery, amplitude change detection (ACD) and coherent change detection (CCD) are widely employed. However, time-series SAR data often contain noise and variability introduced by system and environmental factors, requiring mitigation. Additionally, the stability of SAR signals is preserved when calibration accounts for temporal and environmental variations.

View Article and Find Full Text PDF

Time-Series Image-Based Automated Monitoring Framework for Visible Facilities: Focusing on Installation and Retention Period.

Sensors (Basel)

January 2025

Department of Architectural Engineering, Dankook University, 152 Jukjeon-ro, Yongin-si 16890, Republic of Korea.

In the construction industry, ensuring the proper installation, retention, and dismantling of temporary structures, such as jack supports, is critical to maintaining safety and project timelines. However, inconsistencies between on-site data and construction documentation remain a significant challenge. To address this, this study proposes an integrated monitoring framework that combines computer vision-based object detection and document recognition techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!