Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Rapid advances in single-cell chromatin accessibility sequencing (scCAS) technologies have enabled the characterization of epigenomic heterogeneity and increased the demand for automatic annotation of cell types. However, there are few computational methods tailored for cell type annotation in scCAS data and the existing methods perform poorly for differentiating and imbalanced cell types. Here, we propose CASCADE, a novel annotation method based on simulation- and denoising-based strategies. With comprehensive experiments on a number of scCAS datasets, we showed that CASCADE can effectively distinguish the patterns of different cell types and mitigate the effect of high noise levels, and thus achieve significantly better annotation performance for differentiating and imbalanced cell types. Besides, we performed model ablation experiments to show the contribution of modules in CASCADE and conducted extensive experiments to demonstrate the robustness of CASCADE to batch effect, imbalance degree, data sparsity, and number of cell types. Moreover, CASCADE significantly outperformed baseline methods for accurately annotating the cell types in newly sequenced data. We anticipate that CASCADE will greatly assist with characterizing cell heterogeneity in scCAS data analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TCBB.2024.3372970 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!