Herein, we report the facile synthesis of indole C(4)-acrylophenone using a C-H bond activation strategy. For this conversion, an unsymmetrical alkyne (phenylethynyl ether) in the presence of cobalt(III)-catalyst works efficiently. In this process, alkyne gets oxidized in the presence of generated water, which is the key step for this method, for which trifluoroethanol is the water source. The pivaloyl directing group chelates effectively to generate the cobaltacycle intermediate, which was detected through high-resolution mass spectrometry (HRMS). Also, the formation of bis(2,2,2-trifluoroethyl) ether has been confirmed and quantified using F NMR. In addition, the applicability of obtained indole C(4)-acrylophenone product has been demonstrated by performing the Nazarov cyclization and conjugate addition to the α,β-unsaturated ketone moiety.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.orglett.4c00389 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!