Simultaneous prediction of the molecular response properties, such as polarizability and the NMR shielding constant, at a low computational cost is an unresolved issue. We propose to combine a linear-scaling generalized energy-based fragmentation (GEBF) method and deep learning (DL) with both molecular and atomic information-theoretic approach (ITA) quantities as effective descriptors. In GEBF, the total molecular polarizability can be assembled as a linear combination of the corresponding quantities calculated from a set of small embedded subsystems in GEBF. In the new GEBF-DL(ITA) protocol, one can predict subsystem polarizabilities based on the corresponding molecular wave function (thus electron density and ITA quantities) and DL model rather than calculate them from the computationally intensive coupled-perturbed Hartree-Fock or Kohn-Sham equations and finally obtain the total molecular polarizability via a linear combination equation. As a proof-of-concept application, we predict the molecular polarizabilities of large proteins and protein aggregates. GEBF-DL(ITA) is shown to be as accurate enough as GEBF, with mean absolute percentage error <1%. For the largest protein aggregate (>4000 atoms), GEBF-DL(ITA) gains a speedup ratio of 3 compared with GEBF. It is anticipated that when more advanced electronic structure methods are used, this advantage will be more appealing. Moreover, one can also predict the NMR chemical shieldings of proteins with reasonably good accuracy. Overall, the cost-efficient GEBF-DL(ITA) protocol should be a robust theoretical tool for simultaneously predicting polarizabilities and NMR shieldings of large systems.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.3c01415DOI Listing

Publication Analysis

Top Keywords

deep learning
8
simultaneous prediction
8
polarizabilities nmr
8
nmr shieldings
8
ita quantities
8
total molecular
8
molecular polarizability
8
linear combination
8
gebf-dlita protocol
8
molecular
6

Similar Publications

The brain undergoes atrophy and cognitive decline with advancing age. The utilization of brain age prediction represents a pioneering methodology in the examination of brain aging. This study aims to develop a deep learning model with high predictive accuracy and interpretability for brain age prediction tasks.

View Article and Find Full Text PDF

Development and Validation of KCPREDICT: A Deep Learning Model for Early Detection of Coronary Artery Lesions in Kawasaki Disease Patients.

Pediatr Cardiol

January 2025

Department of Infectious Disease, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, No. 1678 Dongfang Road, Pudong New Area, Shanghai, 200127, China.

Kawasaki disease (KD) is a febrile vasculitis disorder, with coronary artery lesions (CALs) being the most severe complication. Early detection of CALs is challenging due to limitations in echocardiographic equipment (UCG). This study aimed to develop and validate an artificial intelligence algorithm to distinguish CALs in KD patients and support diagnostic decision-making at admission.

View Article and Find Full Text PDF

Machine learning-based assessment of morphometric abnormalities distinguishes bipolar disorder and major depressive disorder.

Neuroradiology

January 2025

Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.

Introduction: Bipolar disorder (BD) and major depressive disorder (MDD) have overlapping clinical presentations which may make it difficult for clinicians to distinguish them potentially resulting in misdiagnosis. This study combined structural MRI and machine learning techniques to determine whether regional morphological differences could distinguish patients with BD and MDD.

Methods: A total of 123 participants, including BD (n = 31), MDD (n = 48), and healthy controls (HC, n = 44), underwent high-resolution 3D T1-weighted imaging.

View Article and Find Full Text PDF

The development of deep learning algorithms has transformed medical image analysis, especially in brain tumor recognition. This research introduces a robust automatic microbrain tumor identification method utilizing the VGG16 deep learning model. Microscopy magnetic resonance imaging (MMRI) scans extract detailed features, providing multi-modal insights.

View Article and Find Full Text PDF

Purpose: The aim of the work is to develop a cascaded diffusion-based super-resolution model for low-resolution (LR) MR tagging acquisitions, which is integrated with parallel imaging to achieve highly accelerated MR tagging while enhancing the tag grid quality of low-resolution images.

Methods: We introduced TagGen, a diffusion-based conditional generative model that uses low-resolution MR tagging images as guidance to generate corresponding high-resolution tagging images. The model was developed on 50 patients with long-axis-view, high-resolution tagging acquisitions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!