Electrochemical water splitting under acidic conditions is a clean way towards producing hydrogen fuels. The slow kinetics of the oxygen evolution reaction (OER) at the anode is currently a bottleneck for commercial acceptance of this technology. Therefore, arriving at more efficient and sustainable OER electrocatalysts is highly desirable. We here demonstrate the synthesis of iridium-palladium (IrPd) alloy nanoparticles (2-5 nm) with variable average composition (Ir : Pd = 1 : 0, 1 : 1, 1 : 3, 1 : 6, 1 : 9 and 0 : 1) using a facile one-pot microwave-assisted chemical reduction method. The IrPd nanoparticles show structure- and composition-dependent OER performance in acidic media. Utilizing different reduction strengths and precursor ratios, successful alloy catalysts were prepared with Ir-rich skin and sublayers of different Pd compositions. Their structures were revealed using high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and hydrogen underpotential deposition (H) studies. It turned out that (1) the alloy OER catalyst also has a high electrochemically active surface area for hydrogen adsorption/desorption, (2) the OER performance is strongly dependent on the surface Ir contribution and (3) the intact Ir skin is essential for electrocatalyst stability.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3cp04284gDOI Listing

Publication Analysis

Top Keywords

ir-rich skin
8
microwave-assisted chemical
8
chemical reduction
8
reduction method
8
oer performance
8
oer
5
tailoring iridium-palladium
4
iridium-palladium nanoparticles
4
nanoparticles ir-rich
4
skin highly
4

Similar Publications

Electrochemical water splitting under acidic conditions is a clean way towards producing hydrogen fuels. The slow kinetics of the oxygen evolution reaction (OER) at the anode is currently a bottleneck for commercial acceptance of this technology. Therefore, arriving at more efficient and sustainable OER electrocatalysts is highly desirable.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!