Electrochemical water splitting under acidic conditions is a clean way towards producing hydrogen fuels. The slow kinetics of the oxygen evolution reaction (OER) at the anode is currently a bottleneck for commercial acceptance of this technology. Therefore, arriving at more efficient and sustainable OER electrocatalysts is highly desirable. We here demonstrate the synthesis of iridium-palladium (IrPd) alloy nanoparticles (2-5 nm) with variable average composition (Ir : Pd = 1 : 0, 1 : 1, 1 : 3, 1 : 6, 1 : 9 and 0 : 1) using a facile one-pot microwave-assisted chemical reduction method. The IrPd nanoparticles show structure- and composition-dependent OER performance in acidic media. Utilizing different reduction strengths and precursor ratios, successful alloy catalysts were prepared with Ir-rich skin and sublayers of different Pd compositions. Their structures were revealed using high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and hydrogen underpotential deposition (H) studies. It turned out that (1) the alloy OER catalyst also has a high electrochemically active surface area for hydrogen adsorption/desorption, (2) the OER performance is strongly dependent on the surface Ir contribution and (3) the intact Ir skin is essential for electrocatalyst stability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3cp04284g | DOI Listing |
Phys Chem Chem Phys
March 2024
Department of Green Technology, University of Southern Denmark, Campusvej 55, Odense M DK-5230, Denmark.
Electrochemical water splitting under acidic conditions is a clean way towards producing hydrogen fuels. The slow kinetics of the oxygen evolution reaction (OER) at the anode is currently a bottleneck for commercial acceptance of this technology. Therefore, arriving at more efficient and sustainable OER electrocatalysts is highly desirable.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!