Diagnosis and treatment of tumor especially drug-resistant tumor remains a huge challenge, which requires intelligent nanomedicines with low toxic side effects and high efficacy. Herein, deformable smart DNA nanomachines are developed for synergistic intracellular cancer-related miRNAs imaging and chemo-gene therapy of drug-resistant tumors. The tetrahedral DNA framework (MA-TDNA) with fluorescence quenched component and five antennas is self-assembled first, and then DOX molecules are loaded on the MA-TDNAs followed by linking MUC1-aptamer and Mcl-1 siRNA to the antennas of MA-TDNA, so that the apt-MA-TDNA@DOX-siRNA (DNA nanomachines) is constructed. The DNA nanomachine can respond to two tumor-related miRNAs in vitro and in vivo, which can undergo intelligent miRNA-triggered opening of the framework, resulting in the "turn on" of the fluorescence for sensitively and specifically sensing intracellular miRNAs. Meanwhile, both miRNA-responded rapid release and pH-responded release of DOX are achieved for chemotherapy of tumor. In addition, the gene therapy of the DNA nanomachines is achieved due to the miRNA-specific capture and the RNase H triggered release of Mcl-1 siRNA. The DNA nanomachines intergrading both tumor imaging and chemo-gene therapy in single nanostructures realized efficient tumor-targeted, image-guided, and microenvironment-responsive tumor diagnosis and treatment, which provides a synergetic antitumor effect on drug-resistant tumor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202308562 | DOI Listing |
Anal Chem
January 2025
School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China.
Conventional solid/liquid electrochemical interfaces typically encounter challenges with impeded mass transport for poor electrochemical quantification due to the intricate pathways of reactants from the bulk solution. To address this issue, this work reports an innovative approach integrating a target-activated DNA framework nanomachine with electrochemically driven metal-organic framework (MOF) conversion for self-sacrificial biosensing. The presence of the target biomarker serotonin initiates the DNA framework nanomachine by an entropy-driven circuit to form a cross-linked nanostructure and subsequently release the Fe-MOF probe.
View Article and Find Full Text PDFChem Asian J
December 2024
Guangxi Normal University, School of chemistry and pharmaceutical science, No.15, Yucai Road, 541004, Guilin, CHINA.
The anomalous expression of microRNA poses a serious threat to human life and health safety, and serves as an important biomarker for cancer detection. In this study, a novel magnetic-assisted DNA logic gate nanomachine triggered by miRNA-21 and miRNA-155 was designed based on the trans-cleavage activity of CRISPR/Cas12a activated by a split DNA activator, using only a single crRNA and signal probe, which simplified the detection procedure and complex nucleic acid amplification. The presence of target molecules, miRNA-21 and miRNA-155, can stimulate the DNA walker machine assembled on magnetic beads, which releases activator under the action of DNAzyme.
View Article and Find Full Text PDFSubcell Biochem
December 2024
Centro de Tecnologías Físicas, Universitat Politècnica de València, Valencia, Spain.
A virus is a complex molecular machine that propagates by channeling its genetic information from cell to cell. Unlike macroscopic engines, it operates in a nanoscopic world under continuous thermal agitation. Viruses have developed efficient passive and active strategies to pack and release nucleic acids.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China.
Electrochemiluminescence (ECL) microscopy has emerged as a powerful technique for single-cell imaging owing to its unparalleled background-free imaging advantages. However, controlled intracellular ECL imaging remains challenging. Here, we developed a stimuli-responsive self-assembled DNA nanomachine that enables the ECL imaging of intracellular target biomolecules in single cells.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H2V 0B3, Canada.
Life on Earth depends on chemical communication and the ability of biomolecular switches to integrate various chemical signals that trigger their activation or deactivation over time scales ranging from microseconds to days. The ability to similarly program and control the kinetics of artificial switches would greatly assist the design and optimization of future chemical and nanotechnological systems. Two distinct structure-switching mechanisms are typically employed by biomolecular switches: induced fit (IF) and conformational selection (CS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!