Hyperfine and Zeeman interactions in ultracold collisions of molecular hydrogen with atomic lithium.

J Chem Phys

Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, 87-100 Toruń, Poland.

Published: March 2024

We present a rigorous quantum scattering study of the effects of hyperfine and Zeeman interactions on cold Li-H2 collisions in the presence of an external magnetic field using a recent ab initio potential energy surface. We find that the low-field-seeking states of H2 predominantly undergo elastic collisions: the ratio of elastic-to-inelastic cross sections exceeds 100 for collision energies below 100 mK. Furthermore, we demonstrate that most inelastic collisions conserve the space-fixed projection of the nuclear spin. We show that the anisotropic hyperfine interaction between the nuclear spin of H2 and the electron spin of Li can have a significant effect on inelastic scattering in the ultracold regime, as it mediates two processes: the electron spin relaxation in lithium and the nuclear spin-electron spin exchange. Given the predominance of elastic collisions and the propensity of inelastic collisions to retain H2 in its low-field-seeking states, our results open up the possibility of sympathetic cooling of molecular hydrogen by atomic lithium, paving the way for future exploration of ultracold collisions and high-precision spectroscopy of H2 molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0193148DOI Listing

Publication Analysis

Top Keywords

hyperfine zeeman
8
zeeman interactions
8
ultracold collisions
8
molecular hydrogen
8
hydrogen atomic
8
atomic lithium
8
low-field-seeking states
8
elastic collisions
8
inelastic collisions
8
nuclear spin
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!