Objective: To identify new parameters predicting fetal acidemia.

Methods: A retrospective case-control study in a cohort of deliveries from a tertiary referral hospital-based cohort deliveries in Zaragoza, Spain between 2018 and 2021 was performed. To predict fetal acidemia, the NICHD categorizations and non-NICHD parameters were analyzed in the electronic fetal monitoring (EFM). Those included total reperfusion time, total deceleration area and the slope of the descending limb of the fetal heart rate of the last deceleration curve. The accuracy of the parameters was evaluated using the specificity for (80%, 85%, 90%, 95%) sensitivity and the area under the receiver operating characteristic curve (AUC).

Results: A total of 10 362 deliveries were reviewed, with 224 cases and 278 controls included in the study. The NICHD categorizations showed reasonable discriminatory ability (AUC = 0.727). The non-NICHD parameters measured during the 30-min fetal monitoring, total deceleration area (AUC = 0.807, 95% CI: 0.770, 0.845) and total reperfusion time (AUC = 0.750, 95% CI: 0.707, 0.792), exhibited higher discriminatory ability. The slope of the descending limb of the fetal heart rate of the last deceleration curve had the best AUC value (0.853, 95% CI: 0.816, 0.889). The combination of total deceleration area or total reperfusion time with the slope demonstrated high discriminatory ability (AUC = 0.908, 95% CI: 0.882, 0.933; specificities of 71.6% and 72.7% for a sensitivity of 90%).

Conclusions: The slope of the descending limb of the fetal heart rate of the last deceleration curve is the strongest predictor of fetal acidosis, but its combination with the total reperfusion time shows better clinical utility.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ijgo.15454DOI Listing

Publication Analysis

Top Keywords

fetal heart
16
heart rate
16
total reperfusion
16
reperfusion time
16
total deceleration
12
deceleration area
12
slope descending
12
descending limb
12
limb fetal
12
rate deceleration
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!