Plastics are complex chemical mixtures of polymers and various intentionally and nonintentionally added substances. Despite the well-established links between certain plastic chemicals (bisphenols and phthalates) and adverse health effects, the composition and toxicity of real-world mixtures of plastic chemicals are not well understood. To assess both, we analyzed the chemicals from 36 plastic food contact articles from five countries using nontarget high-resolution mass spectrometry and reporter-gene assays for four nuclear receptors that represent key components of the endocrine and metabolic system. We found that chemicals activating the pregnane X receptor (PXR), peroxisome proliferator receptor γ (PPARγ), estrogen receptor α (ERα), and inhibiting the androgen receptor (AR) are prevalent in plastic packaging. We detected up to 9936 chemical features in a single product and found that each product had a rather unique chemical fingerprint. To tackle this chemical complexity, we used stepwise partial least-squares regressions and prioritized and tentatively identified the chemical features associated with receptor activity. Our findings demonstrate that most plastic food packaging contains endocrine- and metabolism-disrupting chemicals. Since samples with fewer chemical features induce less toxicity, chemical simplification is key to producing safer plastic packaging.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10956434 | PMC |
http://dx.doi.org/10.1021/acs.est.3c08250 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!