A series of new sulfonamide derivatives connected through an imine linker to five or seven membered heterocycles were designed and synthesized. All synthesized derivatives were characterized using a variety of spectroscopic methods, including IR, HNMR, and CNMR. α-glucosidase and α-amylase inhibition activities, as well as glucose uptake were assessed for each of the synthesized compounds. Four sulfonamide derivatives namely 3a, 3b, 3h and 6 showed excellent inhibitory potential against α-glucosidase with IC values of 19.39, 25.12, 25.57 and 22.02 μM, respectively. They were 1.05- to 1.39-fold more potent than acarbose. Sulfonamide derivatives 3g, 3i and 7 (EC values of 1.29, 21.38 and 19.03 μM, respectively) exhibited significant glucose uptake activity that were 1.62- to 27-fold more potent than berberine. Both α-glucosidase protein (PDB: 2QMJ) and α-amylase (PDB: 1XCW) complexed with acarbose were adopted for docking investigations for the most active synthesized compounds. The docked compounds were able to inhabit the same space as the acarviosin ring of acarbose. The docking of the most active compounds showed an analogous binding with the active site of α-glucosidase as acarbose. The superior activity of the synthesized compounds against α-glucosidase enzyme than α-amylase enzyme can be rationalized by the weak interaction with the α-amylase. The physiochemical parameters of all synthesized compounds were aligned with Lipinski's rule of five.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10910856 | PMC |
http://dx.doi.org/10.1039/d4ra01060d | DOI Listing |
Microorganisms
December 2024
Department of Chemistry, Illinois State University, Normal, IL 61790, USA.
Sulfonamide drugs were the original class of antibiotics, demonstrating the antibacterial potential of dithiocarbazate and thiosemicarbazone Schiff base derivatives of syringaldehyde and 4-hydroxy-3,5-dimethylbenzaldehyde. We synthesized unique Schiff bases via the condensation of the aldehydes with hydrazine derivatives, which allows for the easy synthesis of several related compounds. These Schiff base derivatives were tested for antileishmanial properties against the parasitic protozoan .
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
Five phenolic Schiff bases (-) incorporating a fragment of methanesulfonamide were synthesized and evaluated for their efficacy as antitumor agents. Compounds and demonstrated the most potent antitumor action, with a positive cytotoxic effect (PCE) of 54/59 and 59/59 and a mean growth percentage (MG%) of 67.3% and 19.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Ansan Hospital, Ansan 15355, Republic of Korea.
While cisplatin is an effective anti-tumor treatment, it induces ototoxicity through mechanisms involving DNA damage, oxidative stress, and programmed cell death. Rho-associated coiled-coil-containing protein kinase (ROCK) is essential for numerous cellular processes, including apoptosis regulation. Studies have suggested that ROCK inhibitors could prevent apoptosis and promote regeneration.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, School of Life Science, Jinggangshan University, Ji'an, 343009, China. Electronic address:
Sulfonamide antibiotics (SAs) are widely used in the biomedical field but pose an environmental risk as ecotoxic pollutants. Developing eco-friendly methods to degrade SAs into harmless compounds is crucial. In this work, biochar (BC) was prepared from rice straw via pyrolysis and used to support S-nZVI, thereby forming the S-nZVI/BC composites.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, China. Electronic address:
The derivation of water quality criteria (WQC) for antibiotics is influenced by the inclusion of various organisms' toxicity data, including microbial data, though no definitive conclusions have been reached. This study focuses on sulfonamide antibiotics, common in the Yangtze River Delta (YRD), to assess the influences of different organisms' toxicity data on determining WQCs and subsequent evaluation of ecological risks. A total of 263 toxicity data points from eight sulfonamides, including sulfamethoxazole (SMX) and sulfamethazine (SM2), were selected to derive WQCs using Species Sensitivity Distribution (SSD) methods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!