Valorization of crop residues and animal wastes: Anaerobic co-digestion technology.

Heliyon

Laboratory of Processes, Materials and Environment (LPME), Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Fez, Morocco.

Published: March 2024

To switch the over-reliance on fossil-based resources, curb environmental quality deterioration, and promote the use of renewable fuels, much attention has recently been directed toward the implementation of sustainable and environmentally benign 'waste-to-energy' technology exploiting a clean, inexhaustible, carbon-neutral, and renewable energy source, namely agricultural biomass. From this perspective, anaerobic co-digestion (AcoD) technology emerges as a potent and plausible approach to attain sustainable energy development, foster environmental sustainability, and, most importantly, circumvent the key challenges associated with mono-digestion. This review article provides a comprehensive overview of AcoD as a biochemical valorization pathway of crop residues and livestock manure for biogas production. Furthermore, this manuscript aims to assess the different biotic and abiotic parameters affecting co-digestion efficiency and present recent advancements in pretreatment technologies designed to enhance feedstock biodegradability and conversion rate. It can be concluded that the substantial quantities of crop residues and animal waste generated annually from agricultural practices represent valuable bioenergy resources that can contribute to meeting global targets for affordable renewable energy. Nevertheless, extensive and multidisciplinary research is needed to evolve the industrial-scale implementation of AcoD technology of livestock waste and crop residues, particularly when a pretreatment phase is included, and bridge the gap between small-scale studies and real-world applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10909651PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e26440DOI Listing

Publication Analysis

Top Keywords

crop residues
16
residues animal
8
anaerobic co-digestion
8
renewable energy
8
acod technology
8
valorization crop
4
residues
4
animal wastes
4
wastes anaerobic
4
technology
4

Similar Publications

The snaplage residue presents itself as a potential alternative roughage source in finishing systems, owing to its high fiber concentration which aids in maintaining rumen health. Nevertheless, the performance of animals will hinge on both the allowance and the nutritive value it offers. This study aimed to evaluate different stocking rates of heifers grazing snaplage residue as an exclusive source of fiber on finishing phase performance.

View Article and Find Full Text PDF

The proliferation of weeds, pests, and plant diseases in crop cultivation has driven the increased application of herbicide lactofen, insecticide acetamiprid, and fungicide carbendazim, contributing to environmental pollution. Microorganisms are requently employed to remove pesticide residues from the environment. However, Liquid bacterial agents encounter difficulties in transportation and preservation during application and the current immobilized bacterial agents have a single degradation function.

View Article and Find Full Text PDF

Functional Characterization of , a Gene Coding an Aspartic Acid Protease in .

J Fungi (Basel)

December 2024

Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou 434025, China.

Aspartic proteases (APs), hydrolases with aspartic acid residues as catalytic active sites, are closely associated with processes such as plant growth and development and fungal and bacterial pathogenesis. is the dominant pathogenic fungus that causes Fusarium head blight (FHB) in wheat. However, the relationship of APs to the growth, development, and pathogenesis of .

View Article and Find Full Text PDF

Maize ( L.) is a major food and feed crop and an important raw material for energy, chemicals, and livestock. The NF-Y family of transcription factors in maize plays a crucial role in the regulation of plant development and response to environmental stress.

View Article and Find Full Text PDF

Poly(ADP-ribose) polymerase FonPARP1-catalyzed PARylation of protein disulfide isomerase FonPdi1 regulates pathogenicity of Fusarium oxysporum f. sp. niveum on watermelon.

Int J Biol Macromol

December 2024

Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, People's Republic of China; Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, People's Republic of China; State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, People's Republic of China. Electronic address:

Poly(ADP-ribosyl)ation (PARylation), catalyzed by poly(ADP-ribose) polymerases (PARPs) and hydrolyzed by poly(ADP-ribose) glycohydrolase (PARG), is an important reversible post-translational protein modification in all eukaryotes, including plant pathogenic fungi. Previously, we revealed that FonPARP1, an active PARP, is crucial for the pathogenicity of Fusarium oxysporum f. sp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!