Unlabelled: Successful acclimation to copper (Cu) deficiency involves a fine balance between Cu import and export. In the green alga Chlamydomonas reinhardtii, Cu import is dependent on a transcription factor, Copper Response Regulator 1 (CRR1), responsible for activating genes in Cu-deficient cells. Among CRR1 target genes are two Cu transporters belonging to the CTR/COPT gene family (CTR1 and CTR2) and a related soluble protein (CTR3). The ancestor of these green algal proteins was likely acquired from an ancient chytrid and contained conserved cysteine-rich domains (named the CTR-associated domains, CTRA) that are predicted to be involved in Cu acquisition. We show by reverse genetics that Chlamydomonas CTR1 and CTR2 are canonical Cu importers albeit with distinct affinities, while loss of CTR3 did not result in an observable phenotype under the conditions tested. Mutation of CTR1, but not CTR2, recapitulates the poor growth of crr1 in Cu-deficient medium, consistent with a dominant role for CTR1 in high-affinity Cu(I) uptake. On the other hand, the overaccumulation of Cu(I) (20 times the quota) in zinc (Zn) deficiency depends on CRR1 and both CTR1 and CTR2. CRR1-dependent activation of CTR gene expression needed for Cu over-accumulation can be bypassed by the provision of excess Cu in the growth medium. Over-accumulated Cu is sequestered into the acidocalcisome but can become remobilized by restoring Zn nutrition. This mobilization is also CRR1-dependent, and requires activation of CTR2 expression, again distinguishing CTR2 from CTR1 and consistent with the lower substrate affinity of CTR2.

One Sentence Summary: Regulation of Cu uptake and sequestration by members of the CTR family of proteins in Chlamydomonas.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10959442PMC
http://dx.doi.org/10.1093/mtomcs/mfae013DOI Listing

Publication Analysis

Top Keywords

ctr1 ctr2
16
ctr1
6
ctr2
6
distinct function
4
chlamydomonas
4
function chlamydomonas
4
chlamydomonas ctra-ctr
4
ctra-ctr transporters
4
transporters assimilation
4
assimilation intracellular
4

Similar Publications

Copper homeostasis and neurodegenerative diseases.

Neural Regen Res

November 2025

International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of Ministry of Education, Laboratory Animal Center and Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou Province, China.

Copper, one of the most prolific transition metals in the body, is required for normal brain physiological activity and allows various functions to work normally through its range of concentrations. Copper homeostasis is meticulously maintained through a complex network of copper-dependent proteins, including copper transporters (CTR1 and CTR2), the two copper ion transporters the Cu -transporting ATPase 1 (ATP7A) and Cu-transporting beta (ATP7B), and the three copper chaperones ATOX1, CCS, and COX17. Disruptions in copper homeostasis can lead to either the deficiency or accumulation of copper in brain tissue.

View Article and Find Full Text PDF

The RNA polymerase II (RNAPII) transcription cycle is regulated throughout its duration by reversible protein phosphorylation. The elongation factor SPT5 contains two regions targeted by cyclin-dependent kinase 9 (CDK9) and previously implicated in promoter-proximal pausing and termination: the linker between KOWx-4 and KOW5 domains and carboxy-terminal repeat (CTR) 1, respectively. Here we show that phosphorylations in the KOWx-4/5 linker, CTR1 and a third region, CTR2, coordinately control pause release, elongation speed and RNA processing.

View Article and Find Full Text PDF
Article Synopsis
  • Early detection of stress in tea plants is essential for improving breeding strategies and understanding plant genetics.
  • Hyperspectral technology enables rapid assessment of plant health through specific reflectance indices, but these must be validated for each crop.
  • Out of 31 vegetation indices studied, several were effective in distinguishing between stress-tolerant and susceptible tea plants, particularly those that utilize near-infrared reflectance, which aids in managing tea germplasm under abiotic stress conditions.
View Article and Find Full Text PDF

Cinobufagin treatments suppress tumor growth by enhancing the expression of cuproptosis-related genes in liver cancer.

Naunyn Schmiedebergs Arch Pharmacol

August 2024

Department of Bioprocess Engineering, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.

Cuproptosis is a recently discovered form of regulated cell death triggered by excess copper (Cu) strongly influenced by the import, export, and intracellular utilization of Cu known as Cu homeostasis. Cinobufagin (CB) is a well-known Chinese medicine for its apoptosis-inducing role; however, its function on cuproptosis is poorly understood. To evaluate the effect of CB on inducing cell death through cuproptosis, we used RNA-seq data of HepG2-treated cells with CB to understand Cuproptosis genes.

View Article and Find Full Text PDF

Unlabelled: Successful acclimation to copper (Cu) deficiency involves a fine balance between Cu import and export. In the green alga Chlamydomonas reinhardtii, Cu import is dependent on a transcription factor, Copper Response Regulator 1 (CRR1), responsible for activating genes in Cu-deficient cells. Among CRR1 target genes are two Cu transporters belonging to the CTR/COPT gene family (CTR1 and CTR2) and a related soluble protein (CTR3).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!