Carrier phase of a harmonically mode-locked optical frequency comb (OFC) is investigated in detail. While harmonically mode-locked OFCs show promise for high-repetition-rate applications, their mode spacing is not the same as the pulse repetition rate, unlike fundamentally mode-locked OFCs. Consequently, harmonically mode-locked OFCs are unsuitable for applications requiring OFCs with wide mode spacing. This study examines the pulse-to-pulse carrier phase evolution of 4th- and 5th-order harmonically mode-locked OFCs, revealing uneven carrier phase evolution responsible for the narrow mode spacing. The possibility of achieving harmonically mode-locked OFCs with wide mode spacing is suggested by implementing pulse-to-pulse phase modulation to ensure even phase evolution.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.516634DOI Listing

Publication Analysis

Top Keywords

harmonically mode-locked
24
mode-locked ofcs
20
mode spacing
16
carrier phase
12
phase evolution
12
mode-locked optical
8
optical frequency
8
ofcs wide
8
wide mode
8
mode-locked
7

Similar Publications

Tunable Multisoliton State Ultrafast Fiber Laser Based on NiSe and Generation of Vector Dual-Wavelength Solitons.

ACS Appl Mater Interfaces

January 2025

College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Lin'an 311300, China.

As a member of the chalcogenide family, NiSe exhibits a direct bandgap of 1.74 eV, making it a promising candidate for nonlinear optical devices. However, its potential in the near-infrared region of the telecommunication band has not been fully explored.

View Article and Find Full Text PDF

Preparation of amorphous silicon-doped YO aerogel enabling nonlinear optical features for ultrafast photonics.

Nanophotonics

April 2024

School of Information Science and Engineering, Key Laboratory of Laser and Infrared System of Ministry of Education, Shandong University, Qingdao 266237, China.

Amorphous aerogels with the microscopic nanoscale three-dimensional meshes provide superb platforms for investigating unique physicochemical properties. In order to enhance the physical, thermal and mechanical performances, one efficient and common approach is integrating diverse functional materials. Herein, we report a simple strategy to fabricate the amorphous silicon doped YO aerogels with the post-gelation method under the N/EtOH supercritical atmosphere.

View Article and Find Full Text PDF
Article Synopsis
  • Fiber mode-locked lasers produce ultrashort pulses and can have varying optical outputs based on cavity adjustments, leading to challenges due to their multistability.
  • The study showcases the use of the Soft Actor-Critic algorithm to generate a harmonic mode-locked regime in a fiber laser, utilizing an ion-gated nanotube saturable absorber.
  • This research presents a machine-learning approach to effectively manage pumping power and absorber transmission, enabling automatic adjustments to overcome the complexities of nonlinear optical systems.
View Article and Find Full Text PDF

We demonstrate a high-power 925-nm pulsed laser system based on a frequency-doubled, all-polarization-maintaining (PM) fiber laser source operating at 1.8 µm. The seed is a figure-9 mode-locked oscillator, which incorporates a nonlinear amplifying loop mirror.

View Article and Find Full Text PDF

Mid-infrared (MIR) microcombs exhibit remarkable advantages for trace molecule detection, facilitating fast and precise spectral analysis. However, due to limitations in tunability and size of available MIR pump sources, it is difficult to achieve compact MIR mode-locked microcombs using traditional methods. Here, we propose the turnkey generation of MIR soliton and near-infrared second-harmonic microcombs in a single microresonator.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!