Carrier phase of a harmonically mode-locked optical frequency comb (OFC) is investigated in detail. While harmonically mode-locked OFCs show promise for high-repetition-rate applications, their mode spacing is not the same as the pulse repetition rate, unlike fundamentally mode-locked OFCs. Consequently, harmonically mode-locked OFCs are unsuitable for applications requiring OFCs with wide mode spacing. This study examines the pulse-to-pulse carrier phase evolution of 4th- and 5th-order harmonically mode-locked OFCs, revealing uneven carrier phase evolution responsible for the narrow mode spacing. The possibility of achieving harmonically mode-locked OFCs with wide mode spacing is suggested by implementing pulse-to-pulse phase modulation to ensure even phase evolution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.516634 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Lin'an 311300, China.
As a member of the chalcogenide family, NiSe exhibits a direct bandgap of 1.74 eV, making it a promising candidate for nonlinear optical devices. However, its potential in the near-infrared region of the telecommunication band has not been fully explored.
View Article and Find Full Text PDFNanophotonics
April 2024
School of Information Science and Engineering, Key Laboratory of Laser and Infrared System of Ministry of Education, Shandong University, Qingdao 266237, China.
Amorphous aerogels with the microscopic nanoscale three-dimensional meshes provide superb platforms for investigating unique physicochemical properties. In order to enhance the physical, thermal and mechanical performances, one efficient and common approach is integrating diverse functional materials. Herein, we report a simple strategy to fabricate the amorphous silicon doped YO aerogels with the post-gelation method under the N/EtOH supercritical atmosphere.
View Article and Find Full Text PDFWe demonstrate a high-power 925-nm pulsed laser system based on a frequency-doubled, all-polarization-maintaining (PM) fiber laser source operating at 1.8 µm. The seed is a figure-9 mode-locked oscillator, which incorporates a nonlinear amplifying loop mirror.
View Article and Find Full Text PDFMid-infrared (MIR) microcombs exhibit remarkable advantages for trace molecule detection, facilitating fast and precise spectral analysis. However, due to limitations in tunability and size of available MIR pump sources, it is difficult to achieve compact MIR mode-locked microcombs using traditional methods. Here, we propose the turnkey generation of MIR soliton and near-infrared second-harmonic microcombs in a single microresonator.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!