We demonstrate that chirped pulse up-conversion (CPU), a method routinely used with systems based on 1-kHz Titanium:Sapphire lasers, can be extended to a repetition rate of 100 kHz with an Ytterbium diode-pumped femtosecond amplifier. Individual mid-infrared spectra can thus be measured directly in the near infrared using a fast CMOS linescan camera. After an appropriate Fourier processing, a spectral resolution of 1.1 cm is reported, currently limited by our spectrometer. Additionally, we demonstrate the application of CPU to a pump-probe measurement of the vibrational relaxation in carboxy-hemoglobin, and we show that the combination of fast scanning and fast acquisition enables a straightforward removal of pump scattering interference.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.515291DOI Listing

Publication Analysis

Top Keywords

chirped pulse
8
100 khz
8
pulse upconversion
4
upconversion femtosecond
4
femtosecond mid-infrared
4
mid-infrared spectroscopy
4
spectroscopy 100
4
khz demonstrate
4
demonstrate chirped
4
pulse up-conversion
4

Similar Publications

Conformational Space of 3-Chloropropionic Acid in Gas Phase Explored by Rotational Spectroscopy.

J Phys Chem A

December 2024

Departamento de Química Física y Química Inorgánica, Facultad de Ciencias─I.U. CINQUIMA, Paseo de Belén, 7, 47011 Valladolid, Spain.

The conformational space of 3-chloropropionic acid has been studied under the isolated conditions of a supersonic expansion using Stark-modulated free-jet absorption millimeter-wave and centimeter-wave chirped-pulse Fourier transform microwave spectroscopy techniques. The rotational spectra originating from the three most stable conformers including Cl and Cl isotopologues were observed in both experiments using helium expansion while a partial conformational relaxation involving skeletal rearrangements takes place in an argon expansion. The rotational parameters, geometries, and energy order were determined from the experiment, allowing a comparison with quantum chemical predictions.

View Article and Find Full Text PDF

Vital signs such as heart rate (HR) and respiration rate (RR) are essential physiological parameters that are routinely used to monitor human health and bodily functions. They can be continuously monitored through contact or contactless measurements performed in the home or a hospital. In this study, a contactless Doppler radar W-band sensing system was used for short-range, contactless vital sign estimation.

View Article and Find Full Text PDF

We theoretically investigate the impact of nonlinear dispersion of crystals and multilayers used in Laue-type pulse compressors (LPCs) on chirped x-ray pulse compression, as well as the optimization method for the configuration of LPCs. We also study the application of LPCs to compress chirped x-ray free-electron laser pulses based on the parameters of LCLS-II-HE. The results show that the optimal thickness is half of the Pendellosung period, yielding the best compressor performance with minimal impact from the nonlinear dispersion.

View Article and Find Full Text PDF

The rotational spectra of a mixture of 2,4-pentanediol (PDL) isomers, comprising both the meso isomers [(2R, 4S) and (2S, 4R)] and the racemic isomers [(2R, 4R) and (2S, 4S)], were recorded using a chirped-pulse Fourier transform microwave spectrometer coupled to a supersonic jet expansion. The conformational landscapes of meso- and racemic-PDL were examined using the Conformer-Rotamer Ensemble Sampling Tool and high-level quantum chemical calculations, generating 26 and 25 conformers, respectively. Five sets of rotational transitions were observed and assigned, with two attributed to meso-PDL and the remaining three attributed to racemic-PDL.

View Article and Find Full Text PDF

We present a spectroscopic method that employs a single linearly chirped laser pulse (LCLP) generated by external modulation to realize long-distance multi-point gas sensing. Even without frequency-chirping calibration, accurate single-shot spectral measurement is rendered possible by the high linearity of intrapulse chirping (linearity error of ∼10). Utilizing the LCLP's built-in capacity of time-division-multiplexing, high measurement sensitivity is guaranteed by introducing a multichannel intensity noise compensation mechanism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!