Circumferential scanning in endoscopic imaging is crucial across various disciplines, and optical coherence tomography (OCT) is often the preferred choice due to its high-speed, high-resolution, and micron-scale imaging capabilities. Moreover, real-time and high-speed 3D endoscopy is a pivotal technology for medical screening and precise surgical guidance, among other applications. However, challenges such as image jitter and non-uniform rotational distortion (NURD) are persistent obstacles that hinder real-time visualization during high-speed OCT procedures. To address this issue, we developed an innovative, low-cost endoscope that employs a brushless DC motor for scanning, and a sensorless technique for triggering and synchronizing OCT imaging with the scanning motor. This sensorless approach uses the motor's electrical feedback (back electromotive force, BEMF) as a virtual Hall sensor to initiate OCT image acquisition and synchronize it with a Fourier Domain Mode-Locked (FDML)-based Megahertz OCT system. Notably, the implementation of BEMF-triggered OCT has led to a substantial reduction in image jitter and NURD (<4 mrad), thereby opening up a new window for real-time visualization capabilities. This approach suggests potential benefits across various applications, aiming to provide a more accurate, deployable, and cost-effective solution. Subsequent studies can explore the adaptability of this system to specific clinical scenarios and its performance under practical endoscopic conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.514636 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!