AI Article Synopsis

  • The study investigates why some patients with benign paroxysmal positional vertigo (BPPV) do not respond to the standard Epley maneuver, suggesting that individual anatomical differences in the membranous labyrinth may play a significant role.
  • Using advanced 3D imaging and mathematical modeling, researchers simulated the Epley maneuver to analyze the movement of otoconia (tiny particles) and fluid within the labyrinth.
  • The findings showed that otoconia often fail to reach the desired location, indicating that longer resting times and alternative rotation angles may enhance treatment effectiveness by preventing complications.

Article Abstract

Objectives: Canalith repositioning procedures to treat benign paroxysmal positional vertigo are often applied following standardized criteria, without considering the possible anatomical singularities of the membranous labyrinth for each individual. As a result, certain patients may become refractory to the treatment due to significant deviations from the ideal membranous labyrinth, that was considered when the maneuvers were designed. This study aims to understand the dynamics of the endolymphatic fluid and otoconia, within the membranous labyrinth geometry, which may contribute to the ineffectiveness of the Epley maneuver. Simultaneously, the study seeks to explore methods to avoid or reduce treatment failure.

Design: We conducted a study on the Epley maneuver using numerical simulations based on a three-dimensional medical image reconstruction of the human left membranous labyrinth. A high-quality micro-computed tomography of a human temporal bone specimen was utilized for the image reconstruction, and a mathematical model for the endolymphatic fluid was developed and coupled with a spherical particle model representing otoconia inside the fluid. This allowed us to measure the position and time of each particle throughout all the steps of the maneuver, using equations that describe the physics behind benign paroxysmal positional vertigo.

Results: Numerical simulations of the standard Epley maneuver applied to this membranous labyrinth model yielded unsatisfactory results, as otoconia do not reach the frontside of the utricle, which in this study is used as the measure of success. The resting times between subsequent steps indicated that longer intervals are required for smaller otoconia. Using different angles of rotation can prevent otoconia from entering the superior semicircular canal or the posterior ampulla. Steps 3, 4, and 5 exhibited a heightened susceptibility to failure, as otoconia could be accidentally displaced into these regions.

Conclusions: We demonstrate that modifying the Epley maneuver based on the numerical results obtained in the membranous labyrinth of the human specimen under study can have a significant effect on the success or failure of the treatment. The use of numerical simulations appears to be a useful tool for future canalith repositioning procedures that aim to personalize the treatment by modifying the rotation planes currently defined as the standard criteria.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11175731PMC
http://dx.doi.org/10.1097/AUD.0000000000001493DOI Listing

Publication Analysis

Top Keywords

membranous labyrinth
24
epley maneuver
20
numerical simulations
16
canalith repositioning
8
repositioning procedures
8
benign paroxysmal
8
paroxysmal positional
8
endolymphatic fluid
8
image reconstruction
8
maneuver
6

Similar Publications

Background: Exposures to hazardous noise causes irreversible injury to the structures of the inner ear, leading to changes in hearing and balance function with strong links to age-related cognitive impairment. While the role of noise-induced hearing loss in long-term health consequences, such as progression or development of Alzheimer's Disease (AD) has been suggested, the underlying mechanisms and behavioral and cognitive outcomes or therapeutic solutions to mitigate these changes remain understudied. This study aimed to characterize the association between blast exposure, hearing loss, and the progression of AD pathology, and determine the underlying mechanisms.

View Article and Find Full Text PDF

Learning to hear again with alternating cochlear frequency allocations.

Sci Rep

January 2025

Department of ENT/Audiology & School for Mental Health and NeuroScience (MHENS), Maastricht University Medical Centre, Maastricht, The Netherlands.

Traditionally, the place-pitch 'tonotopically' organized auditory neural pathway was considered to be hard-wired. Cochlear implants restore hearing by arbitrarily mapping frequency-amplitude information. This study shows that recipients, after a long period of sound deprivation, preserve a level of auditory plasticity, enabling them to swiftly and concurrently learn speech understanding with two alternating, distinct frequency maps.

View Article and Find Full Text PDF

Hypoxia tolerance and its variation with temperature, activity, and body mass, are critical ecophysiological traits through which climate impacts marine ectotherms. To date, experimental determination of these traits is limited to a small subset of modern species. We leverage the close coupling of carbon and oxygen in animal metabolism to mechanistically relate these traits to the carbon isotopes in fish otoliths (δC).

View Article and Find Full Text PDF

The refinement of neural circuits towards mature function is driven during development by patterned spontaneous calcium-dependent electrical activity. In the auditory system, this sensory-independent activity arises in the pre-hearing cochlea and regulates the survival and refinement of the auditory pathway. However, the origin and interplay of calcium signals during cochlear development is unknown in vivo.

View Article and Find Full Text PDF

Myosin-VIIA (MYO7A) is an unconventional myosin responsible for syndromic (Usher 1B) or nonsyndromic forms of deafness in humans when mutated. In the cochlea, MYO7A is expressed in hair cells, where it is believed to act as the motor protein tensioning the mechanoelectrical transducer (MET) channels, thus setting their resting open probability (). However, direct evidence for this unique role for an unconventional myosin in mature hair cells is lacking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!